
Noname manuscript No.
(will be inserted by the editor)

How to Get It Right? A Comprehensive Analysis
of Challenges and Strategies for Software Release
Notes on GitHub

Jianyu Wu · Hao He · Kai Gao ·
Wenxin Xiao · Jingyue Li · Minghui
Zhou

Received: date / Accepted: date

Abstract Release notes (RNs) refer to the technical documentation that of-
fers users, developers, and other stakeholders comprehensive information about
the changes and updates of a new software version. Producing high-quality
RNs can be challenging, and it remains unknown what issues developers com-
monly encounter and what effective strategies can be adopted to mitigate
them. To bridge this knowledge gap, we conduct a manual analysis of 1,529
latest RN-related issues in the GitHub issue tracker by using multiple rounds
of open coding and construct 1) a comprehensive taxonomy of RN-related is-
sues with four dimensions validated through three semi-structured interviews;
2) an effective framework with eight categories of strategies to overcome these
challenges. The four dimensions of RN-related issues revealed by the taxon-
omy and the corresponding strategies from the framework include: 1) Content
(419, 25.47%): RN producers tend to overlook information rather than include
inaccurate details, especially for breaking changes. To address this, effective
completeness validations are recommended, such as managing Pull Requests,
issues, and commits related to RNs; 2) Presentation (150, 9.12%): inadequate
layout may bury important information and lead to end users’ confusion, which
can be mitigated by employing a hierarchical structure, standardized format,
rendering RNs, and folding techniques; 3) Accessibility (303, 18.42%): many
users find RNs inaccessible due to link deterioration, insufficient notification,
and obfuscated RN locations. This can be alleviated by adopting appropri-
ate locations and channels (such as project websites) and standardizing link
management.; 4) Production (773, 46.99%): despite the high demand from RN
producers, automating and standardizing the RN production process remains

Jianyu Wu · Hao He · Kai Gao · Wenxin Xiao · Minghui Zhou
Key Laboratory of High Confidence Software Technologies, Ministry of Education
Peking University, Beijing, China
Jingyue Li
Norwegian University of Science and Technology, Trondheim, Norway
E-mail: {jy.wu, heh, gaokai19, zhmh}@pku.edu.cn, wenxin.xiao@stu.pku.edu.cn,
jingyue.li@ntnu.no



2 Jianyu Wu et al.

challenging. Developers resolve this problem by using some mature tools on
GitHub (like Release Drafter). Additionally, offering guidance, clarifying re-
sponsibilities, and distributing workloads are effective in improving collabora-
tion within the team. Mechanisms for distributing and verifying RNs are also
selected to enhance synchronization management. Our taxonomy provides a
comprehensive blueprint to improve RN production in practice and also reveals
interesting future research directions.

Keywords Release engineering · Release note · Empirical study · Taxonomy

1 Introduction

When a new software version needs to be released, documentation for introduc-
ing the important changes, such as new features and bugs fixed, between two
successive software releases (Moreno et al., 2017), i.e., Release Notes (RNs),
emerges as a natural requirement. RNs offer a central source of information
to 1) facilitate the communication between the software and its users1 (Bi
et al., 2020); 2) track the evolution of software and provide insights into the
rationales behind specific changes (Maalej and Happel, 2010; Shihab et al.,
2013; Wu et al., 2023). When upgrading software, consulting RNs is widely
recognized as a best practice for users. For users, RNs are typically used to
inform them of: 1) potentially beneficial changes, such as bug fixes, enhance-
ments, and new features to help them decide whether to upgrade to the new
release; 2) potentially interrupting changes, along with guidance for migration
or mitigation. Besides, internal developers utilize RNs to formally document
development progress and plans for the upcoming release (Bi et al., 2020).

Providing an informative RN for users is a challenging task. Firstly, the
tight deadlines in agile software development may even tempt developers to
reduce the effort put into RNs.2 Additionally, the creation of RNs can be a
laborious and error-prone process. For example, the RN producers of Firefox
have to traverse thousands of changes between two releases within a week and
carefully select the significant ones to be included in the final RNs.3 The survey
by (Moreno et al., 2017) also reveals that “creating a release note by hand is
a difficult and effort-prone activity that can take up to eight hours”. Despite
substantial effort invested in producing RNs, the final RNs may be of low
quality (bad organization, missing important changes, etc.) and these quality
problems often trouble software users. Currently, many researchers focus on
1) summarizing information categories found in RNs (Abebe et al., 2016; Bi
et al., 2020; Moreno et al., 2017); 2) identifying RN-related artifacts (Nath
and Roy, 2021); and 3) exploring automated technologies to facilitate RN
generation (Yang et al., 2021). However, there is still a lack of a systematic

1Throughout this paper, we use the term “user” to refer to anyone reading or referring
to RNs for their tasks, including internal developers, downstream developers, and software
end users.

2https://github.com/vue-leaflet/Vue2Leaflet/issues/663
3https://wiki.mozilla.org/Release_Management/Release_Notes

https://github.com/vue-leaflet/Vue2Leaflet/issues/663
https://wiki.mozilla.org/Release_Management/Release_Notes


Title Suppressed Due to Excessive Length 3

understanding of real RN-related issues4 and the corresponding strategies, that
is, how RNs go wrong or fail to meet users’ expectations and how developers
resolve the corresponding issues. Such an understanding can help formulate
best practices and reveal important future research directions for automating
and regulating RN production.

To bridge the knowledge gap, we pose the following research questions:

– RQ1: What are the RN-related issues proposed on GitHub?
– RQ2: What strategies do developers adopt to resolve the RN-related issues?

To answer RQ1, we collect 1,529 RN-related issues in the GitHub issue
tracker from GHArchive5 and build a comprehensive taxonomy of these is-
sues using multiple rounds of open coding. The taxonomy is further validated
through three semi-structured interviews. The results of RQ1 reveal four di-
mensions of RN-related issues:

– Content (419, 25.47%): Issues concerning Completeness (274, 16.66%)
are more prominent than Correctness (145, 8.81%), especially for breaking
changes and new features. RN producers should ensure that these two types
of changes are not omitted and are sufficiently described. Missing, wrong,
and broken links are also particularly salient, which annoyingly prevent
users from accessing supplementary information. Besides, some issues are
less frequent but also critical and meaningful, such as missing security
changes, license changes, dependency/environment specifications, etc.

– Presentation (150, 9.12%): A considerable proportion of issues concern
Usability (94, 5.71%). The issues concern Language (56, 3.40%), most fre-
quently caused by spelling, writing style, grammar, etc. The poor layout
of RNs increases users’ difficulty in locating relevant information and may
even cause users to miss their desired information.

– Accessibility (303, 18.42%): Many users complain that RNs are difficult
to access due to link deterioration (77, 4.68%), lack of notification (33,
2.01%), and covert RN locations (188, 11.43%). Users may also become
irritated when they receive excessive notifications (5, 0.30%).

– Production (773, 46.99%): Developers demonstrate a strong demand
for Automation (314, 19.09%), but automated tools/scripts may lack de-
sired features, tend to induce errors, and are hard/error-prone to configure.
Additionally, without proper Planning (328, 19.94%), e.g., release schedules
and deadlines, users may be confused about the absence of RNs. Standard-
ization (94, 5.71%) of RN production, especially conventions for issues, pull
requests (PRs), and commits, is vital to efficient RN production in complex
and large software projects. Finally, attention should be given to ensure
the Consistency (37, 2.25%) of RNs across various locations.

To answer RQ2, we perform multiple rounds of open coding on the above
issues to construct a comprehensive framework of strategies employed by devel-

4In this paper, the term “RN-related issues” refers to the issues proposed by developers
in the GitHub issue tracker system for software release notes.

5https://www.gharchive.org

https://www.gharchive.org


4 Jianyu Wu et al.

opers. The framework consists of 483 solutions, organized into eight categories
of strategies:

1. Location & Channel options (149): Developers select diverse locations
and channels to tackle the challenges of RN notification, access, and man-
agement, such as project websites (48), files in the repositories (38), GitHub
Release Page (28), within apps (27), and instant Message Channels (8).

2. Automation Recommendation (128): Developers adopt a total of 26
different automation tools to streamline the generation of RNs and en-
hance the efficiency of the release management workflow. The three most
frequently chosen ones are Cake.recipe (19), Release Drafter (15), and
GitHub’s release features (12).

3. Presentation Improvement (76): Developers improve RN’s readability
and organization by applying a hierarchical structure (26), rendering RNs
(24), standardizing the RN format (17), and folding mechanisms (8).

4. Completeness Validation (54): Developers recommend effective man-
agement for PRs, commits, and GitHub issues to validate the complete-
ness of RN. This includes categorizing PRs based on affected components
and change types (30), utilizing commit conventions such as Conventional
Commits6 (14), and assigning issues to milestones (6).

5. Collaboration Management (22): Offering guidance to produce RNs
(15), clarifying responsibilities (4), and distributing workloads (3) are three
effective strategies to enhance the collaboration among the developers dur-
ing RN production.

6. Link Standardization (19): Formatting links (12), periodic verification
(4), and centralized management (3) are commonly adopted measures to
prevent users from accessing the intended website.

7. Synchronization Management (18): Developers adopt the mechanisms
to distribute (16) and verify (2) the RNs to ensure the consistency between
RNs displayed across various places and with other relevant documenta-
tion.

8. Timely Delivery (17): Implementing standardized publishing practices,
such as establishing deadlines (10) or defining a sequential process (7), can
greatly facilitate the timely production of RNs.

Based on our results, we further discuss the factors that drive develop-
ers to select these strategies and explore effective implementations in various
scenarios. We additionally identify open research challenges of automated RN
generation and testing of RN completeness/correctness in practice.

2 Background and Related Work

In the early years of software development, software products are often released
“once and for all” with no modifications after the initial release. However,

6https://www.conventionalcommits.org/

https://www.conventionalcommits.org/


Title Suppressed Due to Excessive Length 5

successful software inevitably evolves into new versions. With the release of a
new version, the need for documentation, i.e., Release Note (RN), to explain
the changes in this version arises naturally. Although we cannot precisely trace
the history of the earliest RNs, the term “release note” has at least been used
in the software industry since the 1980s (Holloway, 1985).

From the beginning of the 21st century, the movement toward agile soft-
ware development advocates “release early, release often” so that a tight feed-
back loop between developers and users can be created (Olsson and Bosch,
2014). Consequently, the required effort to manage changes between consec-
utive software versions has significantly increased. Then, software projects
begin to formulate systematic agendas for software release management, in
which RNs are perhaps the most important kind of documentation (Aghajani
et al., 2020). Nowadays, complex software systems such as Firefox have to deal
with a tremendous amount (up to thousands) of patches during each release
cycle, which creates a formidable challenge in tracking changes to be included
in a RN and producing the final RN. For Firefox, the Mozilla team defines a
systematic process, including workflows, conventions, and automated tooling,
to support the creation of RNs.7

However, RNs remain an understudied research topic. Early studies only
use RNs as a data source for understanding other software maintenance and
evolution topics (Alali et al., 2008; Maalej and Happel, 2010; Shihab et al.,
2013; Yu, 2009). It is not until the recent decade do researchers begin to study
RNs themselves with two main fronts: empirical studies for understanding RN
practices and approaches for automated RN generation.

2.1 Understanding Release Note Practices

Moreno et al. (2017) manually analyzes 1,000 RNs from 58 industrial and
open-source projects. They identify 17 common change types in RNs, such as
fixed bugs, new features, and new code components. Similarly, Abebe et al.
(2016) manually analyzes 85 RNs from 15 software projects and identifies six
types of information: title, system overview, resource requirement, installa-
tion, addressed issues, and caveat. Bi et al. (2020) study the characteristics of
32,425 RNs from 1,000 GitHub projects. They classify common RN content
into eight topics including issues fixed, new features, system internal changes,
etc. They find that RN content significantly differs across software in different
domains, e.g., for application software and system software, new features are
most frequently documented. They further uncover discrepancies between RN
producers and users through interviews and surveys. Nath and Roy (2022)
explore and analyze relevant artifacts of 3,347 RNs on GitHub and conclude
that issues, PRs, commits, and CVEs are four kinds of key artifacts in RNs.
Moreover, Yang et al. (2022) collect 69,851 RNs of popular apps on the Google
Play Store and identify six patterns on the app stores regarding the length and

7https://wiki.mozilla.org/Release_Management/Release_Notes

https://wiki.mozilla.org/Release_Management/Release_Notes


6 Jianyu Wu et al.

content updatability of RNs. Wu et al. (2023) analyze 612 RNs from top pop-
ular GitHub projects to characterize the structure, writing style, and content
of these RNs. However, it is still unclear what content tends to go wrong in
RNs, which may have a different distribution.

The nature of RN is also discussed in some work related to software doc-
umentation. Aghajani et al. (2020) perform a survey with 150 developers to
investigate what kind of documentation types are considered important in
software development. They find that although most developers consider RNs
and change logs to be necessary, their absence is also among their frequently
encountered issues. Developers also suggest including documentation such as
RNs as mandatory items in the release checklist.

Despite the discrepancies between RN producers and users as identified
by Bi et al. (2020), we still lack a comprehensive empirical understanding
of real issues in RN production and usage, as well as effective strategies to
address them. Our taxonomy and framework provide a significant amount of
new empirical evidence for improving RN production in practice.

2.2 Automating Release Note Production

Since producing RNs is both important and effort-prone, developers naturally
begin to explore ways to automate this process. For software projects managed
via a version control system (VCS), the most straightforward way of producing
a RN is to aggregate all changes from the VCS (e.g., aggregating all commit
messages from Git). However, such a simple way of automation comes with
severe drawbacks, as noted by the OpenStack documentation:

“Release notes are not meant to be a replacement for git commit messages.
They should focus on the impact for the user and make that understandable,
even for people who do not know the full technical context for the patch or
project”.8

To facilitate the production of high quality RNs while reducing manual ef-
fort, many open-source projects have begun to adopt tools for automated RN
generation, including Semantic Release9 (∼14k stars), Release It10 (∼4k
stars), Release Drafter11 (∼2k stars), etc. All tools make the assumption
that every software change should be documented using predefined templates
or labels so that they can generate RNs based on predefined rules. For example,
Semantic Release requires developers to write commit messages in the format
specified by Angular Commit Message Conventions12 with eight types of pre-
defined changes. These tools are generally designed to be easily extensible and
configurable to fit the needs of different projects. Even if some automation

8https://docs.openstack.org/project-team-guide/release-management.html#

how-to-add-new-release-notes
9https://github.com/semantic-release/semantic-release

10https://github.com/release-it/release-it
11https://github.com/release-drafter/release-drafter
12https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#commits

https://docs.openstack.org/project-team-guide/release-management.html#how-to-add-new-release-notes
https://docs.openstack.org/project-team-guide/release-management.html#how-to-add-new-release-notes
https://github.com/semantic-release/semantic-release
https://github.com/release-it/release-it
https://github.com/release-drafter/release-drafter
https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#commits


Title Suppressed Due to Excessive Length 7

is adopted, it is still common to post edit the RNs to summarize changes,
highlight, or intrigue readers, etc.

To improve the state of practice, researchers have proposed novel ap-
proaches for automated RN generation. Klepper et al. (2016) propose a semi-
automated RN generation tool which extracts change descriptions from issue
trackers and organizes them by labels to meet the need of a specific audi-
ence. Moreno et al. (2017) propose a fully automated RN generation tool,
ARENA, which integrates both changes from VCS and rationales for each
change from issue trackers into RNs with predefined change categories. Nath
and Roy (2021) propose to generate RNs from commit messages and pull re-
quests using text summarization and word embedding techniques. Jiang et al.
(2021a) propose a language-agnostic approach to produce RNs from pull re-
quest text. Recently, Kamezawa et al. (2022) propose two deep learning-based
approaches for generating RNs with unlabeled commits based on a dataset of
approximately 82,000 English RNs and associated commit messages.

While several automated approaches have been proposed by researchers,
we are still not aware of any wide industrial adoption, indicating potential
discrepancies between research and practice. Our work complements existing
efforts on RN automation by summarizing best automation practices and re-
veals future research directions for improving automated tools. Except for RN
automation, our framework of strategies can also be applied to address other
RN-related issues, thereby filling a significant gap in the existing research.

3 RQ1: What are the RN-related issues proposed on GitHub?

3.1 Methodology

3.1.1 Data Collection

In this study, we choose to analyze GitHub issues, which developers use to
track ideas, provide feedback, report bugs and initiate discussions.13We favor
GitHub issues over Stack Overflow questions because GitHub issues contain
more information, such as reports and discussions among developers, and pro-
vide concrete examples about how RNs fail, apart from developers’ opinions.

Mining GitHub: GitHub is one of the most popular social coding plat-
forms and provides access control and several collaboration features such as
bug tracking, feature requests, and task management for every project. It
is a commonly used data source for exploring software issues in previous
works (Coelho et al., 2015; Humbatova et al., 2020). To this end, we use the
GHArchive dataset to collect all GitHub issues that:

– have activities (at least one IssueEvent14 in GHArchive) in 2021;

13https://docs.github.com/en/issues/tracking-your-work-with-issues/

about-issues
14An IssueEvent can refer to any activity associated with issues, e.g., creating an issue

and commenting on an issue. https://docs.github.com/en/rest/issues/events

https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://docs.github.com/en/rest/issues/events


8 Jianyu Wu et al.

Table 1: Repository Statistics of the Final RN-related Issue Dataset

Mean Median Std. Distribution∗

Age (in Days) 1,989.97 1,790.00 1,055.23
103

# of Commits 7,504.85 1,216.00 32,079.19
102 104 106101 103 105

# of Stars 4,399.52 232.00 14,124.59
100 102 104 106101 103 105

# of Contributors 92.49 33.00 123.59
100 101 102 103

# of Forks 1,066.93 86.00 4,365.92
100 102 104 106101 103 105

# of Issues 382.21 52.00 2,207.51
100 102 104101 103 105

# of PRs 32.76 6.00 138.37
100 102 104101 103

# of Releases 86.20 17.00 423.64
100 102 104101 103

∗ We increment all values by one to plot the distribution in log-scale.

– contain the keyword “release note” in their titles.

We only include the latest GitHub issues (with activities in 2021) because we
observe that RN practices are rapidly changing in open-source communities,
and thus data timeliness is vital. For example, Bi et al. (2020) report that
developers do not use automated RN generation tools while the number of
automated RN generation tools is gaining increasing popularity recently (Sec-
tion 2.2). This initial selection results in 3,297 issues from 1,139 repositories.

Refining Dataset: Two authors (named as inspectors), both with over
six years of software development experience, further read all the issues jointly
to refine the final dataset. The inspectors browse through the GitHub issue
pages of all the collected issues together as an initial familiarization of the
dataset and exclude 1,768 issues that are not related to certain problems in
RNs (i.e., False Positives), including the following cases:

– Release Statements (1,162, 35.24%): The issue is only an official announce-
ment of a release or a release note.

– Non-Informative (228, 6.92%): The issue contains too little information
(e.g., only a few words in title and description) to be understood by the
inspectors.

– Irrelevant (221, 6.70%): The issue happens to have the keyword “release
note” in its title but actually refers to a problem not related to RNs.

– Unreachable (98, 2.97%): The issue is no longer available on GitHub (e.g.,
the repository is deleted or made private, the issue is deleted, etc.).

– Non-English (32, 0.97%): The issue contains non-English text and is not
understandable by the inspectors.

– Mistake (27, 0.82%): The issue reporter misunderstands the RN and re-
ports a non-existent problem.

The final dataset for our study consists of 1,529 issues from 1,139 reposito-
ries. The repository statistics are summarized in Table 1 where we can observe
that most issues come from repositories with long development history, high



Title Suppressed Due to Excessive Length 9

Table 2: Statistics for Each Round of Manual Labeling

Round 1 2 3 4 5∗ Total

Analyzed 459 356 356 356 90 1,529
Cohen’s Kappa - 0.80 0.87 0.88 - -

Newly Added
- #Dimensions 3 1 0 0 0 4
- #Categories 5 3 0 0 0 8
- #Subcategories 2 2 1 0 0 5
- #Leaf Nodes 48 14 10 4 -3 73

∗ The fifth round samples issues from the previous four rounds.

popularity, and sufficient development activities.15 The size of our dataset
is larger than similar software engineering studies that conduct qualitative
manual analysis on text (e.g., studies on Stack Overflow posts and patch de-
scriptions (Aghajani et al., 2019; Beyer et al., 2018; Chen et al., 2020; Tan
and Zhou, 2019; Zhang et al., 2019a)).

We also gather information about the reporter and the duration for each
RN-related issue in our final dataset to understand the characteristics of these
issues. Specifically, GitHub defines five roles in the organization/project,16 i.e.,
Owner, Member, Collaborator, Contributor, and None. We consider the first
three roles with write permissions as the project’s “Core” developers. The
duration is calculated as the number of hours between the time the issue is
reported and the time it is closed.17

3.1.2 Data Analysis

For the final 1,529 RN-related issues, we follow an open coding procedure to
inductively create the dimensions, categories, subcategories, and leaf nodes
of our taxonomy in a bottom-up way (Seaman, 1999). Similar to previous
works (Chen et al., 2020; Humbatova et al., 2020), our procedure of taxonomy
construction consists of four steps: pilot construction, extended construction,
developer interview, and reproducibility verification. The four steps are inte-
grated with a five-round labeling process18 and the statistics for each round
of labeling are summarized in Table 2.

Pilot Construction. We randomly sample 30% (459) of the 1,529 issues
for a pilot construction of the taxonomy in the first round with two stages.

15The long tail distributions of most metrics are expected and common in mining software
repository datasets (He et al., 2021; Zhang et al., 2019b).

16https://docs.github.com/en/account-and-profile/setting-up-and-managing-your

-account-on-github/managing-personal-account-settings/permission-levels-for-a

-personal-account-repository
17We exclude issues whose status is open and whose duration time is over one year in

order to avoid bias introduced by forgetting to close and inactivity.
18Compared with the ICPC paper (Wu et al., 2022), we replicated the entire experiment

on the extended dataset in this paper.

https://docs.github.com/en/account-and-profile/setting-up-and-managing-your
-account-on-github/managing-personal-account-settings/permission-levels-for-a
-personal-account-repository


10 Jianyu Wu et al.

The inspectors mentioned in Section 3.1 independently analyze the underlying
RN problems behind the sampled issues. In the first stage, the inspectors aim
to be familiar with RNs’ issues. They read and reread titles, descriptions,
labels, and comments of each RN-related issue to understand its problems
and intentions. Where necessary, they additionally check relevant code changes
(i.e., pull requests/commits) and RNs that reveal the final solutions adopted
by project developers.

In the second stage, the inspectors assign short phrases as initial codes
and record important information to indicate the problems and needs behind
these issues. If an issue is related to multiple problems and needs, e.g., the RN
misses both new features and breaking changes, it will be assigned multiple
initial codes. After the initial codes are generated, the inspectors proceed to
group similar codes into categories, create a hierarchical taxonomy of RNs’
issues, and assign issues to the taxonomy. We include an additional arbitrator,
who has several publications in top-tier software engineering venues and more
than six years of software development experience, to mediate, discuss, and
resolve any disagreement during taxonomy construction.

They continuously go back and forth between categories and issues to re-
fine the taxonomy until the inspectors and the arbitrator finally approve all
categories in the taxonomy.

Extended Construction: Based on the initial hierarchical taxonomy
generated in Section 3.1.2, the inspectors and the arbitrator iteratively con-
duct independent labeling, conflict resolution, and taxonomy refinement in the
next three rounds. In each round, two inspectors first independently label one-
third of the remaining issues. When they find issues that cannot be labeled
in the current taxonomy, they add them to a temporary Pending category.
Then, the inspectors and the arbitrator organize a meeting to resolve labeling
conflicts and determine whether new categories should be added for issues in
the Pending category. After the taxonomy is refined, they update all previ-
ously labeled issues into the refined taxonomy and proceed to the next round.
Saturation is reached in the third round because we add only new leaf nodes
(Table 2). We finish labeling all the issues in the fourth round. In the three
rounds of extended construction, we use Cohen’s Kappa (κ) to measure inter-
rater agreement between two inspectors. The κ values are 0.80, 0.87, and 0.88,
respectively, indicating increasing and high agreement between inspectors.

Developer Interview: To validate our taxonomy with practitioners, we
interview three industry software engineers from different large IT companies.
They all have rich experience in publishing RNs with 3, 4, and 8 years of
experience, respectively.

We opt for semi-structured interviews. Each of our interviews begins with
the question: what issues have you encountered around RNs in your software
development process? The purpose of this open-ended question is to see if
our taxonomy covers the problems that developers usually encounter during
development. They each describe three, five, and two issues they encountered
based on their own development experience. Then, we present our taxonomy
and direct them to specific categories of issues in our taxonomy, which enables



Title Suppressed Due to Excessive Length 11

them to recall the other four previous issues. All issues are covered by our
taxonomy, indicating that our taxonomy has good coverage even within a
different context (i.e., industry setting).

Then, we ask them to review and provide suggestions about our taxonomy.
They think our taxonomy is clear and informative, though some leaf nodes can
be improved. After discussion, we decide to merge seven leaf nodes into three
leaf nodes and split one leaf node into two leaf nodes finally. The interview
time varies between 32 minutes and 2 hours. All interviews are conducted face-
to-face with two authors (one is the leader and the other one asks additional
questions when appropriate). The reason is that previous works (Hove and
Anda, 2005; Humbatova et al., 2020) show that participants talk much more
when more than two interviewers conduct the interviews.

Reproducibility Verification: One problem remaining with our tax-
onomy is reproducibility because we intertwine taxonomy construction with
independent labeling. This is hard to avoid because the taxonomy is too com-
plex to be precisely defined in one or two rounds. Although we maintain a
code book during the process, it is still unclear whether others can reproduce
the taxonomy using the same code book. Therefore, we invite two intervie-
wees and one additional Ph.D. candidate to label issues using our code book.
Each of them is assigned 30 different issues, and they return their results after
3 days.19 Compared with our own results, the κ values are 0.89, 0.87, and
0.85, respectively, which also indicates a high agreement and thus good re-
producibility. Our final taxonomy includes four dimensions, seven categories,
four subcategories, and 70 leaf nodes. The entire manual construction process
takes over three months to finish.

3.2 Results

We group all these issues into four dimensions, as depicted in Figure 3 -
Figure 6. These figures present the hierarchical taxonomy of RN-related issues
within each dimension:

1. Content: What information should RNs convey?
2. Presentation: How should RNs convey information?
3. Accessibility: How to make RNs easily accessible?
4. Production: In what way should RNs be produced?

Each dimension is then hierarchically organized into categories (e.g., Com-
pleteness), subcategories (optional, e.g., Missing), and leaf nodes (e.g.,
Missing Breaking Changes). In each figure, we also can see the number of RN-
related issues and percentages for all dimensions, categories, subcategories,
and leaf nodes in the entire taxonomy.

19We do not assign more because inspecting, comprehending, and labeling issues takes
significant time and energy, which they lack to label more.



12 Jianyu Wu et al.

Figure 1 and Figure 2 respectively illustrate the distribution of the percent-
age of reporters who are the core developers for the project and the duration
time for commonly encountered leaf nodes of issues.20

In Figure 1, we can see that the top eight leaf nodes of issues are all under
Production, especially includingWorkflow Management and PR/Issue/Commit
Management. The issues within the Production dimension demand the involve-
ment of more knowledgeable and experienced developers for effective identi-
fication and resolution. Consequently, the core developers should distribute
additional attention to these issues. Conversely, certain issues within the Con-
tent dimension, such as Missing Breaking Changes and Missing Links, are less
frequently reported by core developers compared to other issues.

Figure 2 further reveals distinct characteristics among the leaf nodes un-
der the Production dimension, such as Workflow Management and Request for
Automation. These issues exhibit a longer upper whisker and a shorter lower
whisker, indicating a wider variation among higher values and a more concen-
trated distribution among lower values. We find that the issues reported by
a significant proportion of core developers suggest that resolving these prob-
lems may require a longer time and much effort, with the exception of When
to Produce. For example, addressing issues related to Request for Automa-
tion involves initial discussions on suitable scripts and tools. In the process
of development or deployment, seeking comments and suggestions from other
developers also results in a substantial time investment (Ahire, 2021). Fur-
thermore, issues within the leaf nodes of Limited Exposure, Lack Notification,
and Poor Layout also tend to have longer resolution processes. This is because
they require extensive deliberation on the best locations to publicize RNs and
how to effectively organize RNs. On the other hand, certain issues like Spelling
Errors can be resolved relatively quickly with limited participation.

Summary: RN-related issues focus on four dimensions: Content, Presen-
tation, Accessibility, and Production. Among these issues, nearly half (773,
46.99%) of them focus on Production; Content, Accessibility, and Presentation
take 25.47%, 18.42%, and 9.12%. It is worth noting that a significant percent-
age of core developers report most issues within the Production dimension.
These issues also tend to have a long duration time, indicating that resolving
them may indeed require additional effort.

In the remainder of this section, we will describe our taxonomy with rep-
resentative examples.

3.2.1 Content

In total, 419 issues discuss the Content of RNs, i.e., what information RNs
should convey. Issues from the Content dimension can help better understand

20Considering a large number of leaf nodes, we only plot left nodes whose issue number
is greater than 30, which cover all four dimensions and account for 77.87% of issues in our
dataset.



Title Suppressed Due to Excessive Length 13

Missin
g Breaking Changes

Missin
g Links

Wrong/Broken Links

Poor Fo
rmatting

Poor Layout

Spelling Errors

Limited exposure

Wrong/Broken Links to
 RN

Lack Notific
ation

Request fo
r automation

Request fo
r Enhancement

Error Induced by Automation

Whether to
 Produce

Where to Produce

When to Produce

PR/Issu
e/Commit M

anagement

Workflow Management

Leaf Node

0%

10%

20%

30%

40%

50%

60%
Ra

tio
 o

f I
ss

ue
s P

ro
po

se
d 

by
 C

or
e 

De
ve

lo
pe

rs

Fig. 1: For all issues in each leaf node (with ≥30 issues), the percentage of
issue reporters who are core developers in the organizations/projects.

Missin
g Breaking Changes

Missin
g Links

Wrong/Broken Links

Poor Fo
rmatting

Poor Layout

Spelling Errors

Limited exposure

Wrong/Broken Links to
 RN

Lack Notific
ation

Request fo
r automation

Request fo
r Enhancement

Error Induced by Automation

Whether to
 Produce

Where to Produce

When to Produce

PR/Issu
e/Commit M

anagement

Workflow Management

Leaf Node

0

2000

4000

6000

8000

Du
ra

tio
n 

Ti
m

e 
(h

ou
rs

)

Fig. 2: For all issues in each leaf node (with ≥30 issues), the distribution of
issue duration time (in hours).

1) what typical users would expect from RNs, and 2) what purposes RNs
should serve as one kind of project documentation. This dimension consists of
two categories: Completeness and Correctness.

Within this dimension, the majority of issues, specifically 16.66%, belong
to the category of Completeness, while approximately 8.81% fall under the
category of Correctness. Firstly, they frequently encounter wrong or broken
links in RNs, accounting for 5.71% of the reported problems. These links hin-
der developers from accessing supplementary information, causing frustration.
Secondly, missing breaking changes constitute 3.40% of the issues. This partic-
ular problem can mislead users and lead to significant consequences following
an upgrade, such as software crashes.

Completeness (274, 16.66%): This category of issues concerns whether
RNs contain both sufficient and necessary information required by users during
software upgrades or required by internal developers for maintenance purposes.
It has three subcategories: Missing, Insufficient, and Unwanted.



14 Jianyu Wu et al.

 RN issues

 Content
 (419, 25.47%)

 Completeness
 (274, 16.66%)

 Missing
 (231, 14.04%)

 Missing Breaking Changes (56, 3.40%)

 Missing Links (30, 1.82%)

 Missing New Features (25, 1.52%)

 Missing Dependency/Environment Specification  (25, 1.52%)

 Missing Version Information (23, 1.52%)

 Missing Migration/Usage Instruction (14, 0.85%)

 Missing Attribution (11, 0.67%)

 Missing Known Issues (8, 0.49%)

 Missing Fixed Bugs (8, 0.49%)

 Missing Dependency/Environment Changes (6, 0.36%)

 Missing Security Changes (5, 0.30%)

 Missing Enhancement (4, 0.24%)

 Missing Visualization (3, 0.18%)

 Missing Overview (3, 0.18%)

 Missing Misc Changes (3, 0.18%)

 Missing Documentation Changes
 (2, 0.12%)

 Missing Code Examples (1, 0.06%)

 Missing Warning (1, 0.06%)

 Missing License Changes (1, 0.06%)

 Missing Modified Files (1, 0.06%)

 Missing Workspace Introduction  (1, 0.06%)

 Insufficient
 (37, 2.25%)

 Insufficient New Feature Explanation (10, 0.61%)

 Insufficient Breaking Changes Explanation (8, 0.49%)

 Insufficient Dependency/Environment Specification (5, 0.30%)

 Insufficient Fixed Bug Explanation (4, 0.24%)

 Insufficient Migration/Usage Instruction (3, 0.18%)

 Insufficient Enhancement (3, 0.18%)

 Insufficient Security Explanation (2, 0.12%)

 Insufficient Component Changes (1, 0.06%)

 Insufficient Configuration Changes (1, 0.06%)

 Unwanted
 (6, 0.36%)

 Unwanted Misc Changes (5, 0.30%)

 Unwanted Repository Badges (1, 0.06%)

 Correctness 
 (145, 8.81%)

 Wrong/Broken Links (64, 3.89%)

 Wrong Version Information (21, 1.28%)

 Wrong Dependency/Environment Specification
 (16, 0.97%)

 Wrong Identifier (11, 0.67%)

 Wrong Code Examples (9, 0.55%)

 Wrong Breaking Changes (6, 0.36%)

 Unimplemented Changes (5, 0.30%)

 Wrong Migration/Usage Instruction (4, 0.24%)

 Wrong Dependency/Environment Changes (3, 0.18%)

 Wrong Attribution (2, 0.12%)

 Wrong Fixed Bugs (2, 0.12%)

 Wrong Configuration Explanation (1, 0.06%)

 Wrong New Features (1, 0.06%)

 Accessibility
 (303, 18.42%)

 Limited Exposure
 (188, 11.43%)

 Wrong/Broken Link to 
 RNs (77, 4.68%)

 Lack Notification
 (33, 2.01%)

 Excessive Notification
 (5, 0.30%)

 Presentation 
 (150, 9.12%)

 Usability 
 (94, 5.71%)

 Poor Layout
 (44, 2.67%)

 Improper Section
 (33, 2,01%)

 Insufficient Highlight
 (11, 0.67%)

 Poor Formatting
 (50, 3.04%)

 Typesetting
 (39, 2.37%)

 Date Formatting
 (7, 0.43%)

 Image Formatting
 (4, 0.24%)

 Language
 (56, 3.40%)

 Spelling Errors
 (36, 2.19%)

 Bad Writing Style
 (9, 0.55%)

 Grammar Errors
 (8, 0.49%)

 Multilingual Support 
 Required (3, 0.18%)

 Production
 (773, 46.99%)

 Planning
 (328, 19.94%)

 When to Produce (177, 10.76%)

 Whether to Produce (98, 5.96%)

 Where to Produce (52, 3.16%)

 Who to Produce (1, 0.06%)

 Automation
 (314, 19.09%)

 Request for Automation (161, 9.79%)

 Request for Enhancement (69, 4.19%)

 Errors Induced by Automation
 (55, 3.34%)

 Improper Tool Configuration(28, 1.70%)

 Abandon Automation (1, 0.06%)

 Standardization
 (94, 5.71%)

 PR/Issue/Commit Management
 (62, 3.77%)

 Workflow Management (32, 1.95%)

 Consistency
 (36, 4.66%)

 With other RNs in Different Places 
 (26, 1.58%)

 With other Documents within Project
 (8, 0.49%)

 With other Documents in Different 
 Projects (3, 0.18%)

Fig. 3: RN-Related Issues under the Content Dimension. ( ) Represents Di-
mensions, ( ) Represents Categories, ( ) Represents Subcategories, and
( ) Represents Leaf Nodes.



Title Suppressed Due to Excessive Length 15

Missing (231, 14.04%) subcategory refers to issues stating that some in-
formation perceived important by end users or developers is not included in
the RN at all. The most frequently missed information in RNs includes:

– Breaking Changes (56, 3.40%): Such issues are predominant because end
users directly encounter upgrade failures if they are not notified of breaking
changes from reading RNs. However, it can be difficult for RN producers
to correctly locate and highlight breaking changes in RNs. For example, a
developer from mongoose notes that (the new version) has many errors,
and fixing them is not just changing a function/field name, because func-
tion parameters/semantics have also changed because of the undocumented
breaking changes from v6 to v7.21

– Links (30, 1.82%): In these issues, developers ask for links to external
materials (e.g., related PR/issues/commits, usage guides, CVEs, etc.) to
better understand information conveyed in RNs.

– New Features (25, 1.52%): Some implemented new features may be ignored
in RNs, and (other) developers open issues in need of documenting their
contributions.

– Dependency/Environment Specification (25, 1.52%): Undocumented de-
pendency or environment specification may also accidentally break clients
when users upgrade to new versions.

– Version Information (23, 1.40%): Some developers open issues to discuss
adding version information in RNs, e.g., release date, version number &
name, checksum, and release status (draft or final) for easy reference to
specific releases.

– Migration/Usage Instruction (14, 0.85%): Some developers ask for migra-
tion or usage instructions in RNs to help them understand the impact of
breaking changes and upgrade their client code.

– Attribution (11, 0.67%): Some issues are opened by repository members
to discuss missing attribution to certain participants (e.g., contributors,
funders, commenters, reviewers, etc.). As stated by a maintainer of coq, in
open source software, it is very important to give credit.22

– Known Issues (8, 0.49%): Several issues mention that specific unsolved
issues should be included in RNs to alert end users, e.g., including a crash
about NullPointerException and its workaround in the corresponding
RN of NuGet.23

Other kinds of information may also be reported as missing, though less fre-
quently, including the changes to the dependency/environment, notification of
security changes, enhancements, overview, visualization (additional diagrams
or plots), documentation changes, fixed bugs, license changes, modified files,
code examples, etc.

Issues in the Insufficient (37, 2.25%) subcategory arise because certain
information related to essential changes is not sufficiently detailed for users

21https://github.com/cesanta/mongoose/issues/1271
22https://github.com/coq/coq/issues/7058/#issuecomment-375720879
23https://github.com/NuGet/docs.microsoft.com-nuget/issues/2410

https://github.com/cesanta/mongoose/issues/1271
https://github.com/coq/coq/issues/7058/#issuecomment-375720879
https://github.com/NuGet/docs.microsoft.com-nuget/issues/2410


16 Jianyu Wu et al.

to understand. Two kinds of explanations are most likely to be insufficient in
RNs:

– New Feature Explanation (10, 0.61%): Developers tend to ask for more
information about unfamiliar new features if they intend to use them af-
ter upgrading. For example, Keras 2.0 renames samples per epoch to
steps per epoch in fit generator() but its RN fails to mention addi-
tional changes in parameter semantics, which confuses downstream devel-
opers.24

– Breaking Change Explanation (8, 0.49%): Developers also ask for more
clarification about changes that may break downstream code. We observe
a vivid example in numpy where a developer opens an issue to argue that
we should try to improve the RNs (and probably warnings) for the np.int

and other python alias deprecations.25

Other insufficiently explained information includes dependency/environment
specifications, fixed bugs, migration/usage instructions, enhancements expla-
nation, security changes, configuration changes, and component changes.

Interestingly, nine issues care about Unwanted information in RNs, but
they are likely to be only occasional. Five issues state that only critical/developer-
impacting changes should go in RNs instead of listing all miscellaneous changes26,
while one issue27 mentions that repository badges should not occur in RNs.

Correctness (145, 8.81%): This category means that information de-
scribed in RNs conveys inaccurate information.

Contrary to our intuition, the majority isWrong/Broken Links (64, 3.89%),
which refers to cases where links in RNs cannot be opened or directed to
an incorrect page. Most links should point to other kinds of documentation,
e.g., user guide, for the elaboration of changes in RNs; others are expected
to point to related PR/issue/commit, project main branch, the homepage of
other projects, RNs of sibling projects, files for download, etc. These links are
supposed to supplement information, but they tend to deteriorate over time,
which causes a poor reading experience for RN readers.

Moreover, 21 issues are related to Wrong Version Information (21, 1.28%),
including version number/name, version date, checksum, and most of which
are caused by copy-pasting from previous RNs.28,29,30 Other kinds of change
descriptions that can go wrong include dependency/environment specifica-
tion, identifier, code examples, breaking changes, migration/usage instruc-
tions, unimplemented changes, attribution, explanation of configuration, de-
pendency/environment changes, etc.

24https://github.com/keras-team/keras/issues/11517
25https://github.com/numpy/numpy/issues/17977
26https://github.com/Azure/azure-sdk/issues/1873
27https://github.com/cwarwicker/moodle-tool_ribbons/issues/3
28https://github.com/nushell/nushell/issues/3238
29https://github.com/babel/babel/issues/12961
30https://github.com/MicrosoftEdge/WebView2Feedback/issues/882

https://github.com/keras-team/keras/issues/11517
https://github.com/numpy/numpy/issues/17977
https://github.com/Azure/azure-sdk/issues/1873
https://github.com/cwarwicker/moodle-tool_ribbons/issues/3
https://github.com/nushell/nushell/issues/3238
https://github.com/babel/babel/issues/12961
https://github.com/MicrosoftEdge/WebView2Feedback/issues/882


Title Suppressed Due to Excessive Length 17

Summary: Nearly two-thirds (65.39%) of issues within this dimension con-
cerns Completeness, while only about one-third (34.61%) concerns Correctness.
Developers are most likely to 1) report wrong/broken links in RNs (5.71%),
which annoyingly prevent them from accessing supplementary information,
and 2) missing breaking changes (3.40%), which may mislead users and incur
severe consequences after upgrading (e.g., crash).

3.2.2 Presentation

 RN issues

 Content
 (419, 25.47%)

 Completeness
 (274, 16.66%)

 Missing
 (231, 14.04%)

 Missing Breaking Changes (56, 3.40%)

 Missing Links (30, 1.82%)

 Missing New Features (25, 1.52%)

 Missing Dependency/Environment Specification  (25, 1.52%)

 Missing Version Information (23, 1.52%)

 Missing Migration/Usage Instruction (14, 0.85%)

 Missing Attribution (11, 0.67%)

 Missing Known Issues (8, 0.49%)

 Missing Fixed Bugs (8, 0.49%)

 Missing Dependency/Environment Changes (6, 0.36%)

 Missing Security Changes (5, 0.30%)

 Missing Enhancement (4, 0.24%)

 Missing Visualization (3, 0.18%)

 Missing Overview (3, 0.18%)

 Missing Misc Changes (3, 0.18%)

 Missing Documentation Changes
 (2, 0.12%)

 Missing Code Examples (1, 0.06%)

 Missing Warning (1, 0.06%)

 Missing License Changes (1, 0.06%)

 Missing Modified Files (1, 0.06%)

 Missing Workspace Introduction  (1, 0.06%)

 Insufficient
 (37, 2.25%)

 Insufficient New Feature Explanation (10, 0.61%)

 Insufficient Breaking Changes Explanation (8, 0.49%)

 Insufficient Dependency/Environment Specification (5, 0.30%)

 Insufficient Fixed Bug Explanation (4, 0.24%)

 Insufficient Migration/Usage Instruction (3, 0.18%)

 Insufficient Enhancement (3, 0.18%)

 Insufficient Security Explanation (2, 0.12%)

 Insufficient Component Changes (1, 0.06%)

 Insufficient Configuration Changes (1, 0.06%)

 Unwanted
 (6, 0.36%)

 Unwanted Misc Changes (5, 0.30%)

 Unwanted Repository Badges (1, 0.06%)

 Correctness 
 (145, 8.81%)

 Wrong/Broken Links (64, 3.89%)

 Wrong Version Information (21, 1.28%)

 Wrong Dependency/Environment Specification
 (16, 0.97%)

 Wrong Identifier (11, 0.67%)

 Wrong Code Examples (9, 0.55%)

 Wrong Breaking Changes (6, 0.36%)

 Unimplemented Changes (5, 0.30%)

 Wrong Migration/Usage Instruction (4, 0.24%)

 Wrong Dependency/Environment Changes (3, 0.18%)

 Wrong Attribution (2, 0.12%)

 Wrong Fixed Bugs (2, 0.12%)

 Wrong Configuration Explanation (1, 0.06%)

 Wrong New Features (1, 0.06%)

 Accessibility
 (303, 18.42%)

 Limited Exposure
 (188, 11.43%)

 Wrong/Broken Link to 
 RNs (77, 4.68%)

 Lack Notification
 (33, 2.01%)

 Excessive Notification
 (5, 0.30%)

 Presentation 
 (150, 9.12%)

 Usability 
 (94, 5.71%)

 Poor Layout
 (44, 2.67%)

 Improper Section
 (33, 2,01%)

 Insufficient Highlight
 (11, 0.67%)

 Production
 (773, 46.99%)

 Planning
 (328, 19.94%)

 When to Produce (177, 10.76%)

 Whether to Produce (98, 5.96%)

 Where to Produce (52, 3.16%)

 Who to Produce (1, 0.06%)

 Automation
 (314, 19.09%)

 Request for Automation (161, 9.79%)

 Request for Enhancement (69, 4.19%)

 Errors Induced by Automation
 (55, 3.34%)

 Improper Tool Configuration(28, 1.70%)

 Abandon Automation (1, 0.06%)

 Standardization
 (94, 5.71%)

 PR/Issue/Commit Management
 (62, 3.77%)

 Workflow Management (32, 1.95%)

 Consistency
 (36, 4.66%)

 With other RNs in Different Places 
 (26, 1.58%)

 With other Documents within Project
 (8, 0.49%)

 With other Documents in Different 
 Projects (3, 0.18%)

 Language
 (56, 3.40%)

 Spelling Errors
 (36, 2.19%)

 Bad Writing Style
 (9, 0.55%)

 Grammar Errors
 (8, 0.49%)

 Multilingual Support 
 Required (3, 0.18%)

 Poor Formatting
 (50, 3.04%)

 Typesetting
 (39, 2.37%)

 Date Formatting
 (7, 0.43%)

 Image Formatting
 (4, 0.24%)

Fig. 4: RN-Related Issues under the Presentation Dimension.

150 issues are related to Presentation with two categories: Language (56,
3.40%) and Usability (94, 5.71%). Issues from the Presentation dimension
help reveal how information should be organized, formatted, highlighted, vi-
sualized, and phrased in a RN, so that different RN users can make use of the
RN for their purposes with maximum efficiency.

The primary concern within this dimension is Usability. One of the key as-
pects affecting Usability is the Poor Layout of the RNs, which has the potential
to bury important information and mislead end users. Additionally, the Lan-
guage errors of the RNs are caused by various factors, including spelling and
grammar errors, a subpar writing style, and the need for multilingual support.

Usability (94, 5.71%): This category refers to the degree to which
users can use RNs to achieve their objectives effectively.

More than half of the issues arise from Poor Formatting (50, 3.04%),
resulting in the impression that the software development process is unprofes-



18 Jianyu Wu et al.

sional or unorganized, thereby reducing user engagement.31 There are three
leaf nodes under this dimension: Typesetting (39, 2.37%), Data Formatting (7,
0.43%) and Image Formatting (4, 0.24%). Most of these issues are caused by
Typesetting, that is, the misusing syntax of markup languages (e.g., HTML)
and usually lead to abnormal display, such as failing to display list due to miss-
ing HTML linebreaks.32 Furthermore, it is worth noting that inconsistencies
in date formats can lead to confusion among individuals residing in different
geographical regions.33 Additionally, the content of the RN is sometimes dis-
tracted by improper image format, such as GIF animations34, and excessive
resource loading, such as high-resolution images.35

49 issues in this category are related to Poor Layout (44, 2.67%), which
means the changes are not clearly organized in RNs. Two key challenges for
improving RN readability are Improper Section (33, 2.01%) and Insufficient
Highlight (11, 0.67%). Since different stakeholders may be interested in dif-
ferent kinds of information, RNs need to have a proper section structure for
them to quickly locate the information they want (Abebe et al., 2016; Bi
et al., 2020). Improper Section and Insufficient Highlight can increase the time
needed for users to grab valuable information, annoy readers,36bury good fea-
tures,37 and cause important changes to be missed by impacted users. For
example, Electron lists two API deprecations under the “other” section in
the v12.0.0 RN by mistake, which makes the deprecations easily overlooked.38

Languages (56, 3.40%): This category of issues concerns whether
the language of RN is fluent and easy to read, including four leaf nodes:
Spelling Errors (36, 2.19%), Bad Writing Style (9, 0.55%), Grammar Errors
(8, 0.49%), and Multilingual Support Required (3, 0.18%). Although Spelling
Errors are often reported by non-core developers and are quick to fix, they may
be hard to notice, especially for technical terms (e.g., MACs and Macs).39Thus,
extra manpower or time to conduct thorough inspections is essential. Also,
certain writing styles can make RNs clearer and more easily understandable,
such as describing what happens after a bug is fixed instead of what used
to happen.40 One issue asks for multilingual support, which helps more users
understand RNs and enables product adaptation to a broader market.41

31https://github.com/bitwarden/web/issues/766
32https://github.com/nathanwoulfe/Plumber-2/issues/64
33https://github.com/bigcommerce/cornerstone/issues/1990
34https://github.com/microsoft/vscode/issues/138720
35https://github.com/microsoft/vscode-docs/issues/5000
36https://github.com/vaadin/platform/issues/2178
37https://github.com/EOSIO/eos/issues/9903
38https://github.com/electron/electron/issues/28375
39https://github.com/MicrosoftDocs/OfficeDocs-OfficeUpdates/issues/300
40https://github.com/hazelcast/cloud-docs/issues/18
41https://github.com/microsoft/appcenter/issues/2207

https://github.com/bitwarden/web/issues/766
https://github.com/nathanwoulfe/Plumber-2/issues/64
https://github.com/bigcommerce/cornerstone/issues/1990
https://github.com/microsoft/vscode/issues/138720
https://github.com/microsoft/vscode-docs/issues/5000
https://github.com/vaadin/platform/issues/2178
https://github.com/EOSIO/eos/issues/9903
https://github.com/electron/electron/issues/28375
https://github.com/MicrosoftDocs/OfficeDocs-OfficeUpdates/issues/300
https://github.com/hazelcast/cloud-docs/issues/18
https://github.com/microsoft/appcenter/issues/2207


Title Suppressed Due to Excessive Length 19

Summary: The majority of issues (94, 5.71%) within this dimension concerns
Usability, especially the poor layout, which may bury important information
and lead to end users’ misjudgement. The Language (56, 3.40%) errors of RNs
are caused by several factors, including spelling and grammar errors, poor
writing style, and the requirement for multilingual support.

3.2.3 Accessibility

 RN issues

 Content
 (419, 25.47%)

 Completeness
 (274, 16.66%)

 Missing
 (231, 14.04%)

 Missing Breaking Changes (56, 3.40%)

 Missing Links (30, 1.82%)

 Missing New Features (25, 1.52%)

 Missing Dependency/Environment Specification 
 (25, 1.52%)

 Missing Version Information (23, 1.52%)

 Missing Migration/Usage Instruction (14, 0.85%)

 Missing Attribution (11, 0.67%)

 Missing Known Issues (8, 0.49%)

 Missing Fixed Bugs (8, 0.49%)

 Missing Dependency/Environment Changes
 (6, 0.36%)

 Missing Security Changes (5, 0.30%)

 Missing Enhancement (4, 0.24%)

 Missing Visualization (3, 0.18%)

 Missing Overview (3, 0.18%)

 Missing Misc Changes (3, 0.18%)

 Missing Documentation Changes
 (2, 0.12%)

 Missing Code Examples (1, 0.06%)

 Missing Warning (1, 0.06%)

 Missing License Changes (1, 0.06%)

 Missing Modified Files (1, 0.06%)

 Missing Workspace Introduction  (1, 0.06%)

 Insufficient
 (37, 2.25%)

 Insufficient New Feature Explanation (10, 0.61%)

 Insufficient Breaking Changes Explanation (8, 0.
 49%)

 Insufficient Dependency/Environment Specification 
 (5, 0.30%)

 Insufficient Fixed Bug Explanation (4, 0.24%)

 Insufficient Migration/Usage Instruction (3, 0.18%)

 Insufficient Enhancement (3, 0.18%)

 Insufficient Security Explanation (2, 0.12%)

 Insufficient Component Changes (1, 0.06%)

 Insufficient Configuration Changes (1, 0.06%)

 Unwanted
 (6, 0.36%)

 Unwanted Misc Changes (5, 0.30%)

 Unwanted Repository Badges (1, 0.06%)

 Correctness 
 (145, 8.81%)

 Wrong/Broken Links (64, 3.89%)

 Wrong Version Information (21, 1.28%)

 Wrong Dependency/Environment Specification
 (16, 0.97%)

 Wrong Identifier (11, 0.67%)

 Wrong Code Examples (9, 0.55%)

 Wrong Breaking Changes (6, 0.36%)

 Unimplemented Changes (5, 0.30%)

 Wrong Migration/Usage Instruction (4, 0.24%)

 Wrong Dependency/Environment Changes (3, 0.18%)

 Wrong Attribution (2, 0.12%)

 Wrong Fixed Bugs (2, 0.12%)

 Wrong Configuration Explanation (1, 0.06%)

 Wrong New Features (1, 0.06%)

 Production
 (773, 46.99%)

 Planning
 (328, 19.94%)

 When to Produce (177, 10.76%)

 Whether to Produce (98, 5.96%)

 Where to Produce (52, 3.16%)

 Who to Produce (1, 0.06%)

 Automation
 (314, 19.09%)

 Request for Automation (161, 9.79%)

 Request for Enhancement (69, 4.19%)

 Errors Induced by Automation
 (55, 3.34%)

 Improper Tool Configuration(28, 1.70%)

 Abandon Automation (1, 0.06%)

 Standardization
 (94, 5.71%)

 PR/Issue/Commit Management
 (62, 3.77%)

 Workflow Management (32, 1.95%)

 Consistency
 (36, 4.66%)

 With other RNs in Different Places 
 (26, 1.58%)

 With other Documents within Project
 (8, 0.49%)

 With other Documents in Different 
 Projects (3, 0.18%)

 Accessibility
 (303, 18.42%)

 Limited Exposure
 (188, 11.43%)

 Wrong/Broken Link to 
 RNs (77, 4.68%)

 Lack Notification
 (33, 2.01%)

 Excessive Notification
 (5, 0.30%)

 Presentation 
 (150, 9.12%)

 Usability 
 (94, 5.71%)

 Poor Layout
 (44, 2.67%)

 Improper Section
 (33, 2,01%)

 Insufficient Highlight
 (11, 0.67%)

 Poor Formatting
 (50, 3.04%)

 Typesetting
 (39, 2.37%)

 Date Formatting
 (7, 0.43%)

 Image Formatting
 (4, 0.24%)

 Language
 (56, 3.40%)

 Spelling Errors
 (36, 2.19%)

 Bad Writing Style
 (9, 0.55%)

 Grammar Errors
 (8, 0.49%)

 Multilingual Support 
 Required (3, 0.18%)

Fig. 5: RN-Related Issues under the Accessibility Dimension.

Users face various challenges when trying to access RNs. 303 issues are
related toAccessibility, i.e., how to make RNs accessible to a broad audience,
with four leaf nodes: Limited Exposure (188, 11.43%), Wrong/Broken Link to
RNs (77, 4.68%), Lacking Notification (33, 2.01%), and Excessive Notification
(5, 0.30%). Issues in this dimension thus reveal how a software project should
distribute its RNs, maintain links, and notify its users properly.

Limited Exposure (188, 11.43%): Issues under this subcategory ex-
press either difficulty in finding RNs or expectation of more available ways to
access RNs. The former case happens when RNs are placed in obscure loca-
tions, e.g. files with an unconventional name or in a deeply nested directory.42

In the latter case, users suggest various locations to show RNs, e.g. Can we
get a page which explains the features and the release numbers in each of the
releases of Teams Clients? If you have one, we can not find it.43

Wrong/Broken Link to RNs (77, 4.68%): Wrong/Broken Links and
Missing Links under theContent dimension describe cases where links in RNs
are broken or wrong (see Section 3.2.1). The issues here are related to external
links supposed to point to RNs themselves (in the project website, etc.) that
may be broken. For example:

42https://github.com/hedgedoc/hedgedoc.github.io/issues/59
43https://github.com/dotnet/SqlClient/issues/1123

https://github.com/hedgedoc/hedgedoc.github.io/issues/59
https://github.com/dotnet/SqlClient/issues/1123


20 Jianyu Wu et al.

1. The section of the front page of this repo “Links to release notes” is full of
dead links.44

2. Links to the Agent release notes from the APM docs left nav are returning
404s.45

Lack (33, 2.01%) & Excessive(5, 0.30%) Notification: The con-
cerns expressed by these issues are twofold: 1) whether a certain medium
should be adopted to notify users and publicize RNs, and 2) whether current
ways of notification should be improved. For example, several issues mention
the use of RSS feeds to notify new releases. In another case, a user complains:
Currently, the release notes for an updated version only show after the new ver-
sion is installed. Basically, it is preferable to know in advance what changes
are made to the app before its downloaded and installed.46 However, providing
notifications is not always a silver bullet and users may also become irritated
when they receive excessive notifications.47

Summary: Users encounter a diverse range of difficulties in accessing RNs,
including Limited Exposure (188, 11.43%), Wrong/Broken Links to RNs (77,
4.68%), Lack of Notification (33, 2.01%) and Excessive Notification (5, 0.30%).

3.2.4 Production

773 issues fall into the Production dimension, i.e., in what way RNs should be
produced. Problems behind these issues can shed light on prospective automa-
tion approaches, improvement of existing tools, and design of better release
processes. This dimension consists of four categories: Planning (328, 19.94%),
Automation (314, 19.09%), and Standardization (94, 5.71%) and Consistency
(37, 2.25%).

Developers demonstrate a significant interest in automation, which ac-
counts for 19.09% of the issues. However, automated tools/scripts often lack
desired features, tend to introduce errors, and can be challenging or error-prone
to configure. Inadequate planning, such as the absence of release schedules and
deadlines, contributes to 19.94% of the taxonomy. This lack of planning can
confuse users regarding the availability of RNs. Furthermore, proper standard-
ization of RN production, particularly in terms of conventions for PRs, issues,
and commits, is crucial for facilitating efficient RN production in large software
projects. This aspect of standardization accounts for 5.71% of the difficulties,
with PRs, issues, and commits making up 3.83% faced by developers. Besides,
it is important to pay attention to the inconsistency between RNs’ different
locations and related documentation.

44https://github.com/HOKGroup/HOK-Revit-Addins/issues/194
45https://github.com/newrelic/docs-website/issues/758
46https://github.com/sublimehq/sublimes_merge/issues/1097
47https://github.com/cpriest/SnapLinksPlus/issues/287

https://github.com/HOKGroup/HOK-Revit-Addins/issues/194
https://github.com/newrelic/docs-website/issues/758
https://github.com/sublimehq/sublimes_merge/issues/1097
https://github.com/cpriest/SnapLinksPlus/issues/287


Title Suppressed Due to Excessive Length 21

 RN issues

 Content
 (419, 25.47%)

 Completeness
 (274, 16.66%)

 Missing
 (231, 14.04%)

 Missing Breaking Changes (56, 3.40%)

 Missing Links (30, 1.82%)

 Missing New Features (25, 1.52%)

 Missing Dependency/Environment Specification 
 (25, 1.52%)

 Missing Version Information (23, 1.52%)

 Missing Migration/Usage Instruction (14, 0.85%)

 Missing Attribution (11, 0.67%)

 Missing Known Issues (8, 0.49%)

 Missing Fixed Bugs (8, 0.49%)

 Missing Dependency/Environment Changes
 (6, 0.36%)

 Missing Security Changes (5, 0.30%)

 Missing Enhancement (4, 0.24%)

 Missing Visualization (3, 0.18%)

 Missing Overview (3, 0.18%)

 Missing Misc Changes (3, 0.18%)

 Missing Documentation Changes
 (2, 0.12%)

 Missing Code Examples (1, 0.06%)

 Missing Warning (1, 0.06%)

 Missing License Changes (1, 0.06%)

 Missing Modified Files (1, 0.06%)

 Missing Workspace Introduction  (1, 0.06%)

 Insufficient
 (37, 2.25%)

 Insufficient New Feature Explanation (10, 0.61%)

 Insufficient Breaking Changes Explanation (8, 0.
 49%)

 Insufficient Dependency/Environment Specification 
 (5, 0.30%)

 Insufficient Fixed Bug Explanation (4, 0.24%)

 Insufficient Migration/Usage Instruction (3, 0.18%)

 Insufficient Enhancement (3, 0.18%)

 Insufficient Security Explanation (2, 0.12%)

 Insufficient Component Changes (1, 0.06%)

 Insufficient Configuration Changes (1, 0.06%)

 Unwanted
 (6, 0.36%)

 Unwanted Misc Changes (5, 0.30%)

 Unwanted Repository Badges (1, 0.06%)

 Correctness 
 (145, 8.81%)

 Wrong/Broken Links (64, 3.89%)

 Wrong Version Information (21, 1.28%)

 Wrong Dependency/Environment Specification
 (16, 0.97%)

 Wrong Identifier (11, 0.67%)

 Wrong Code Examples (9, 0.55%)

 Wrong Breaking Changes (6, 0.36%)

 Unimplemented Changes (5, 0.30%)

 Wrong Migration/Usage Instruction (4, 0.24%)

 Wrong Dependency/Environment Changes (3, 0.18%)

 Wrong Attribution (2, 0.12%)

 Wrong Fixed Bugs (2, 0.12%)

 Wrong Configuration Explanation (1, 0.06%)

 Wrong New Features (1, 0.06%)

 Production
 (773, 46.99%)

 Planning
 (328, 19.94%)

 When to Produce (177, 10.76%)

 Whether to Produce (98, 5.96%)

 Where to Produce (52, 3.16%)

 Who to Produce (1, 0.06%)

 Automation
 (314, 19.09%)

 Request for Automation (161, 9.79%)

 Request for Enhancement (69, 4.19%)

 Errors Induced by Automation
 (55, 3.34%)

 Improper Tool Configuration(28, 1.70%)

 Abandon Automation (1, 0.06%)

 Standardization
 (94, 5.71%)

 PR/Issue/Commit Management
 (62, 3.77%)

 Workflow Management (32, 1.95%)

 Consistency
 (36, 4.66%)

 With other RNs in Different Places 
 (26, 1.58%)

 With other Documents within Project
 (8, 0.49%)

 With other Documents in Different 
 Projects (3, 0.18%)

 Accessibility
 (303, 18.42%)

 Limited Exposure
 (188, 11.43%)

 Wrong/Broken Link to 
 RNs (77, 4.68%)

 Lack Notification
 (33, 2.01%)

 Excessive Notification
 (5, 0.30%)

 Presentation 
 (150, 9.12%)

 Usability 
 (94, 5.71%)

 Poor Layout
 (44, 2.67%)

 Improper Section
 (33, 2,01%)

 Insufficient Highlight
 (11, 0.67%)

 Poor Formatting
 (50, 3.04%)

 Typesetting
 (39, 2.37%)

 Date Formatting
 (7, 0.43%)

 Image Formatting
 (4, 0.24%)

 Language
 (56, 3.40%)

 Spelling Errors
 (36, 2.19%)

 Bad Writing Style
 (9, 0.55%)

 Grammar Errors
 (8, 0.49%)

 Multilingual Support 
 Required (3, 0.18%)

Fig. 6: RN-Related Issues under the Production Dimension.

Planning (328, 19.94%) This category of issues are with four subcat-
egories: When to Produce (176, 10.76%), Whether to Produce (98, 5.96%),
Where to Produce (52, 3.16%), and Who to Produce (1, 0.06%).

When to Produce (176, 10.76%): In these cases, projects do not provide
RNs for all releases (i.e., some releases are missing RNs), which causes their
users to open inquiry issues. For example, the absence of RN for Recoil con-
fuses a user who says: I saw that version 0.1.3 has been published on npm, but
I cannot find release notes anywhere, would be good to know about potential
breaking changes, deprecations and new additions.48 Besides, although most
projects provide RNs for every version, some of them are released too late to
be helpful which disappoints RN users.49

Whether to Produce (98, 5.96%): This subcategory discusses the ne-
cessity of providing RNs. Some projects never provide RNs for informing
changes in the new release. Consequently, in some cases, users open issues
because the lack of RNs directly leads to upgrade failures and frustration.50

48https://github.com/facebookexperimental/Recoil/issues/916
49https://github.com/hashicorp/terraform-ls/issues/533
50https://github.com/getsentry/sentry-laravel/issues/260

https://github.com/facebookexperimental/Recoil/issues/916
https://github.com/hashicorp/terraform-ls/issues/533
https://github.com/getsentry/sentry-laravel/issues/260


22 Jianyu Wu et al.

They have to resort to various effort-prone methods to figure out changes
from commit history, e.g. using git diff to show all code changes between
two versions.51 Although git log can list all commit messages and ease
the pain of figuring out changes to some extent, as stated by a member of
Common-Workflow-Language, This requires everyone to write the best possible
git commit message and have very clean git histories. While people are capable
of this, it is more work for contributors.52 In other cases, internal developers
open such issues as they notice RNs would help developers to precisely see what
notable changes have been made between each release of the project.53 However,
not everyone agrees with providing a RN with each release because they think
the changes are only internal or too minor to be worth mentioning.54,55 Other
project maintainers acknowledge the necessity of RNs, but they lack time for
them.56

Where to Produce (52, 3.16%) subcategory concern where to collabora-
tively edit and store RN files. Although GitHub provides convenient release
functionalities57 to help developers manage RNs, it currently does not support
collaborative RN editing. By contrast, many projects with a large team wish
to distribute RN workload among team members so that RNs can be scalably
produced. As a result, most projects opt for adding RNs as files in the git
repository so that multiple developers can be involved in RN production.58

One special case mentions the lack of accountability in RN production and
suggests someone should be responsible for it.59

Automation (314, 19.09%): This category reflects four kinds of issues
that developers frequently encounter on automated RN generation: Request
for Automation (168, 20.83%), Request for Enhancement (69, 8.93%), Error
Induced by Automation (55, 7.06%), and Improper Tool Configuration (28,
3.59%) and Abandon Automation (1, 0.13%).

Request for Automation(161, 9.79%) & Abandon Automation(1, 0.06%):
More than half of the issues in the Automation category are opened for dis-
cussing whether some sort of automation should be used and what specific tools
to adopt for managing and generating RNs. These issues are mainly raised by
core developers and with an extremely long duration. As stated by a developer
from spid-compliant-certificates-python: Despite important, writing re-
lease notes is a very boring task...It would be nice to have them automatically

51https://github.com/rayokota/kcache/issues/79
52https://github.com/common-workflow-language/cwlviewer/issues/328#

issuecomment-823410828
53https://github.com/common-workflow-language/cwlviewer/issues/328
54https://github.com/dask/fastparquet/issues/544
55https://github.com/dtolnay/semver/issues/87
56https://github.com/negomi/react-burger-menu/issues/432
57https://docs.github.com/en/repositories/releasing-projects-on-github/

about-releases
58https://github.com/decred/dcrwallet/issues/1966
59https://github.com/wellcomecollection/wellcomecollection.org/issues/5236

https://github.com/rayokota/kcache/issues/79
https://github.com/common-workflow-language/cwlviewer/issues/328#issuecomment-823410828
https://github.com/common-workflow-language/cwlviewer/issues/328#issuecomment-823410828
https://github.com/common-workflow-language/cwlviewer/issues/328
https://github.com/dask/fastparquet/issues/544
https://github.com/dtolnay/semver/issues/87
https://github.com/negomi/react-burger-menu/issues/432
https://docs.github.com/en/repositories/releasing-projects-on-github/about-releases
https://docs.github.com/en/repositories/releasing-projects-on-github/about-releases
https://github.com/decred/dcrwallet/issues/1966
https://github.com/wellcomecollection/wellcomecollection.org/issues/5236


Title Suppressed Due to Excessive Length 23

generated every time a PR is merged.60 Automation can be accomplished in
two main ways according to developers: 1) writing project-specific scripts, e.g.,
filling predefined templates and publishing releases,61 and 2) adopting existing
automated tools such as Semantic Release, github-changelog-generator,
and Release Drafter. Although RN automation is a huge help in reducing
manual toil, some developers express their concerns about full automation in
their projects. They think that an automated workflow: 1) requires prefixes or
labels for classifying commits or PRs, which may burden the code review and
CI complexity; 2) is not suitable for important versions, e.g., stable releases,
which need manual editing for better readability. One issue mentions they give
up automation to generate RNs because they think no need to make a release
for every new push to main.62

Request for Enhancement (69, 4.19%): These issues reveal suggested im-
provements in automated generation tools and scripts by users. Specifically,
users mostly request three kinds of support: 1) automated generation of RNs
for different branches;63 2) automated retrieval of related information from
multiple repositories;643) automated supplement of details, e.g., CVEs65, at-
tribution66, and PR comments67. There are also some specific needs from var-
ious scenarios. For example, a member of CockroachDB proposes an extension
to the RN extraction script to support the amendment of past RNs with new
commits.68 Another issue opened by a contributor of chef/automate, reveals
the limited support of combining multiple RNs when upgrading across mul-
tiple versions and asks for further improvement.69 Some developers suggest
current tools to add support to automate RN publishing.

Errors Induced by Automation (55, 3.34%): These issues report defects
of automated tools and scripts, which are diverse and largely tool/project-
specific. There are two types of issues: one is that these defects lead to un-
expected RNs, e.g., wrong/missing content70, repetition71, and incorrect posi-
tions72; the other one is that these defects affect the generation process, e.g.,
not generating RNs that exceed a certain length.73,74 Among these issues,
most of them are caused by defects of current tools rather than project-specific
scripts. Besides, these tools all have to fetch changes history from Git and sev-

60https://github.com/italia/spid-compliant-certificates-python/issues/6
61https://github.com/eclipse/rdf4j/issues/2784
62https://github.com/cpriest/SnapLinksPlus/issues/287
63https://github.com/opensearch-project/OpenSearch/issues/789
64https://github.com/rfennell/ReleaseNotesAction/issues/131
65https://github.com/kubernetes/release/issues/1354
66https://github.com/renovatebot/renovate/issues/8605
67https://github.com/stephend017/snake-charmer/issues/27
68https://github.com/cockroachdb/cockroach/issues/42163
69https://github.com/chef/automate/issues/2141
70https://github.com/saltstack/salt/issues/54752
71https://github.com/gohugoio/hugo/pull/83
72https://github.com/gitpod-io/gitpod/issues/714
73https://github.com/microsoft/azure-pipelines-tasks/issues/11922
74https://github.com/digidem/mapeo-mobile/issues/581

https://github.com/italia/spid-compliant-certificates-python/issues/6
https://github.com/eclipse/rdf4j/issues/2784
https://github.com/cpriest/SnapLinksPlus/issues/287
https://github.com/opensearch-project/OpenSearch/issues/789
https://github.com/rfennell/ReleaseNotesAction/issues/131
https://github.com/kubernetes/release/issues/1354
https://github.com/renovatebot/renovate/issues/8605
https://github.com/stephend017/snake-charmer/issues/27
https://github.com/cockroachdb/cockroach/issues/42163
https://github.com/chef/automate/issues/2141
https://github.com/saltstack/salt/issues/54752
https://github.com/gohugoio/hugo/pull/83
https://github.com/gitpod-io/gitpod/issues/714
https://github.com/microsoft/azure-pipelines-tasks/issues/11922
https://github.com/digidem/mapeo-mobile/issues/581


24 Jianyu Wu et al.

eral issues are caused by its complex mechanisms, such as branch control75,
rebase76, and release tag77, which developers need to pay more attention to in
design.

Improper Tool Configuration (28, 1.70%): These issues usually arise from
unfamiliarity with the tools, such as generating RNs without a template or by
a wrong template. Most of these issues are caused by misconfigured change
scopes, e.g., the expected branch, version ranges78, certain types of changes79,
and triggered conditions80. Besides, parameter misconfiguration is another
common cause, including the construction of paths81, repository names82, en-
vironment variables83, etc.

Standardization (94, 5.71%): This category of issues refers to what
standardizations should be followed to simplify and ease the production of
RNs. It covers two leaf nodes of issues: PR/Issue/Commit Management (63,
3.83%) and Workflow Management (32, 1.95%).

PR/Issue/Commit Management (63, 3.83%): This subcategory refers to
issues discussing how to efficiently prepare (relevant) PRs, issues, and com-
mits for RNs. This procedure is usually time-consuming, especially for large
projects. For example, a member from pytorch/vision complains that I wrote
the release notes last week and we spent the vast majority of the time label-
ing the PRs and suggests it’d be good to have a process that would make this
faster.84

Workflow Management(32, 1.95%): This subcategory refers to issues dis-
cussing formulation of RN production workflow or improvement on existing
workflow. Among the issues, most issues discuss requesting for a workflow
to standardize the process of producing RNs, which helps ensure that the
notes are accurate and effective. For example, a developer who comes from
mantid/mantidimaging formulates a workflow as follows: Release notes should
be continuously updated during development. Almost all pull requests should
have an update to the relevant file and section in docs/release notes. If the
next release name is not yet chosen, this will be next.rts, and renamed closer
to release. When fixes are backported to a release branch, they can be added
to the notes for that release, in an updates section.85 These issues are also
reported by the core developers, like Request for Automation and tend to take
a considerable amount of time to resolve.

75https://github.com/BlueWallet/BlueWallet/issues/3145
76https://github.com/istio/istio/issues/31816
77https://github.com/DataDog/dd-trace-py/issues/2000
78https://github.com/layer5io/meshery/issues/2907
79https://github.com/PSBicep/PSBicep/issues/103
80https://github.com/corgibytes/freshli-lib/pull/301/files
81https://github.com/zammad/zammad-helm/issues/99
82https://github.com/corgibytes/freshli-lib/pull/279/files
83https://github.com/waifu-motivator/wmp-env-action/issues/29
84https://github.com/pytorch/vision/issues/3351
85https://github.com/mantidproject/mantidimaging/pull/798

https://github.com/BlueWallet/BlueWallet/issues/3145
https://github.com/istio/istio/issues/31816
https://github.com/DataDog/dd-trace-py/issues/2000
https://github.com/layer5io/meshery/issues/2907
https://github.com/PSBicep/PSBicep/issues/103
https://github.com/corgibytes/freshli-lib/pull/301/files
https://github.com/zammad/zammad-helm/issues/99
https://github.com/corgibytes/freshli-lib/pull/279/files
https://github.com/waifu-motivator/wmp-env-action/issues/29
https://github.com/pytorch/vision/issues/3351
https://github.com/mantidproject/mantidimaging/pull/798


Title Suppressed Due to Excessive Length 25

Consistency (37, 2.25%): This category refers to issues about incon-
sistencies between 1) RNs published in different places, 2) RNs and other
documentation within the project, and 3) RNs and documentation in other
projects. RNs are usually published in different places including, GitHub Re-
lease Page, project homepage, etc. However, developers sometimes neglect to
maintain their consistency. For example, a user suggests that It’d be great to
have a way to sync release notes in docs.newrelic.com by fetching the in-
formation from GitHub.86 RNs can also easily become inconsistent with other
documentation within project, e.g. usage guides and READMEs. As an ex-
ample of inconsistency between RNs and usage guides, a user complains that
our documentation is horribly outdated and calls for internal developers to
go through all release notes and move all information that is not outdated
and is missing from the documentation to the usage guide.87 Finally, RNs
sometimes need to include changes or attribution information from closely re-
lated projects, which requires the collaboration of developers from the related
projects.

Summary: Developers show a strong interest in Automation (314, 19.09%),
but automated tools/scripts may lack desired features, tend to induce errors,
and are hard or error-prone to configure. Additionally, without proper Plan-
ning (328, 19.94%), e.g. release schedules and deadlines, users may be confused
about the absence of RNs. Standardization (94, 5.71%) of RN production, es-
pecially conventions for pull requests (PRs), issues, and commits (63, 3.83%),
is vital for enabling efficient RN production in large software projects. The
Consistency (37, 2.25%) checks between the RNs under different locations are
also worth noting.

4 RQ2: What strategies do developers adopt to resolve the
RN-related issues

As revealed in Section 3.2, developers encounter a broad spectrum of challenges
in producing and using RNs, and it becomes crucial to formulate strategies
to mitigate these challenges. In this section, we aim to gain a comprehensive
understanding of the strategies employed by developers in addressing these
RN-related issues.

4.1 Methodology

To identify the final selection of strategies adopted by developers, we meticu-
lously re-examine all 1,529 RN-related issues identified in RQ1 for the second

86https://github.com/newrelic/docs-website/issues/2127
87https://github.com/rotki/rotki/issues/2527

https://github.com/newrelic/docs-website/issues/2127
https://github.com/rotki/rotki/issues/2527


26 Jianyu Wu et al.

time. Considering that an issue may or may not contain the resolved solu-
tions, the same inspectors in RQ1 first collectively go through all issues and
identify issues with such strategies. In this way, we identify 435 issues contain-
ing solutions adopted by developers. Then, we conduct a similar open coding
procedure as in Section 3.1.2 on all 1,529 issues to categorize the strategies.

More specifically, the inspectors first randomly sample 30% (130) of the
435 issues for a pilot study to derive best practices. In the pilot study, the
inspectors independently review the status, labels, and comments related to
each RN-related issue, as well as analyze the corresponding code changes. If an
issue is related to multiple solutions, it will be assigned multiple initial codes.
Then they generate initial codes to describe the solution and merge similar
codes into categories. Subsequently, the inspectors and an arbitrator hold a
meeting to mediate, discuss, and resolve any disagreements in the labeling
results until a final agreement is reached on the code book. Following this, the
inspectors independently utilize the code book to label the remaining 70% of
the issues, and any disagreements are resolved through discussions. The inter-
rater agreement (Cohen’s κ) between the two inspectors is 0.85, indicating a
high agreement.

4.2 Results

We summarize the strategies into eight categories, encompassing a total of 483
solutions from 435 RN-related issues, to effectively resolve the respective chal-
lenges. In this section, the number in the bracket of the section title indicates
the frequency of the solutions. Figure 7 illustrates the mapping between these
strategies and their targeted RN-related issues.

4.2.1 Location & Channel Options (149)

Strategically determining the appropriate locations for publicizing RNs and
selecting effective channels to notify users can address several important chal-
lenges, such as Limited Exposure, Lack Notification. It also mitigates the chal-
lenges (Where to Produce) of the positions for collaborative editing among RN
producers.

Among the 149 solutions, developers have adopted various locations and
channels to place RNs. These include:

– Project Websites (48): Developers have utilized project websites to provide
accessible and centralized access to RNs for each software version. They
also suggest using a specific URL for the latest RN.88

– Files in Repositories (38): Some developers think that providing a RN
file in the repository (e.g., the root directory or the doc folder) is more
important than storing RNs on GitHub Release Page.89 A RN file in the

88https://github.com/3drepo/3drepo.io/issues/2502
89https://github.com/decred/dcrwallet/issues/1966

https://github.com/3drepo/3drepo.io/issues/2502
https://github.com/decred/dcrwallet/issues/1966


Title Suppressed Due to Excessive Length 27

Fig. 7: The Sankey Diagram Illustrates the Mapping Between Each Category
of Strategies and the Corresponding RN-related Issues.

repository makes the repository more self-contained (not depending on
GitHub) and allows the usage of collaborative editing tools like Git.90 The
OpenStack community also requires that its projects must include RN files

90https://github.com/decred/dcrwallet/issues/1966

https://github.com/decred/dcrwallet/issues/1966


28 Jianyu Wu et al.

to record version changes and believes that this way can work on multiple
patches simultaneously and reduce merge conflicts.91

– GitHub Release Page (28): GitHub provides a dedicated page to display
the release history. Many issues show that developers often check GitHub
Release Page first when searching for RNs because they consider GitHub
Release Pages as the most intuitive location for releases and RNs. As stated
by a developer: From an engineering point of view, having release notes
published on GitHub is ideal, this is our source of truth.92

– Within Apps (27): Some developers have integrated RNs directly within
their app itself. Application software can provide buttons and links to
access the latest RN, e.g. an “about” button.93 RN notifications can also
be displayed when a new version is released.94

– Instant Message Channels (8): Some developers have chosen to dissemi-
nate RNs through instant message channels. Such channels can be used
to immediately deliver new RNs to subscribed end-users and facilitate dis-
cussions and feedback related to the release, e.g. Slack95, Discord96 and
Telegram97.

4.2.2 Automation Recommendation (128)

To effectively address the RN-related issues identified under leaf nodes such as
Request for Automation, Request for Enhancement, Improper Tool Configura-
tion, and Errors induced by Automation, 128 solutions adopt an appropriate
automated method for generating RNs. By leveraging proper automation, de-
velopers can streamline the RN generation process and ensure that all relevant
information is included accurately. This not only enhances efficiency and ef-
fectiveness but also greatly reduces the risk of omission errors in the final
RNs.

Considerable efforts have been dedicated to automating the production of
RNs on GitHub through the utilization of custom scripts as well as a diverse
range of specialized tools.98 We identify 26 types of automation tools for gen-
erating RNs among these solutions. Figure 8 illustrates the distribution of
these automated generation tools and custom scripts employed by developers.
The number following the comma indicates the frequency of issues that have
adopted each respective tool or script.

91https://docs.openstack.org/reno/latest/
92https://github.com/newrelic/docs-website/issues/2127
93https://github.com/alteryx/woodwork/issues/808
94https://github.com/chef/chef-workstation-app/issues/302
95https://github.com/cdr/code-server/issues/3193
96https://github.com/Python-Practice-Discord/template_python_discord_bot/

issues/1
97https://github.com/wabarc/wayback/issues/48
98Most automation tools primarily focus on automating RN generation, while there are

also several tools recommended for assisting in RN management. In the following strategies,
we will introduce other tools according to their goals.

https://docs.openstack.org/reno/latest/
https://github.com/newrelic/docs-website/issues/2127
https://github.com/alteryx/woodwork/issues/808
https://github.com/chef/chef-workstation-app/issues/302
https://github.com/cdr/code-server/issues/3193
https://github.com/Python-Practice-Discord/template_python_discord_bot/issues/1
https://github.com/Python-Practice-Discord/template_python_discord_bot/issues/1
https://github.com/wabarc/wayback/issues/48


Title Suppressed Due to Excessive Length 29

Fig. 8: The Distribution of Automated Generation Tools and Scripts for RNs
in our Dataset

Among these tools, we find the most recommended tools on GitHub for
generating RN are Cake.recipe99 (19), Release Drafter (15), the release
features provided by GitHub (12), Semantic Release (7), Gren100 (6), and
Towncrier101 (6). Figure 9 provides the basic information of the six tools.
We find that Release Drafter, Gren, and the official release features pro-
vided by GitHub are specifically designed for generating RNs on GitHub,
while Semantic Release and Cake.recipe also offer extra functions, such as
releasing management and publishing packages. The majority of these tools
have been in development for more than five years and have gained signifi-
cant popularity, attracting numerous projects to deploy them.102 Especially,
GitHub introduced a new feature that enables the automatic generation of
RNs in October 2021 based on PRs between two releases.103 These automa-
tion tools utilize various information as input sources, such as PRs (like the
Release Draft), issues (like Gren and Cake.recipt) and commits (like Gren
and Semantic Release). Then, they categorize the input sources based on
tagged labels and extract their descriptions to generate RNs.

99https://github.com/cake-contrib/Cake.Recipe
100https://github.com/github-tools/github-release-notes
101https://github.com/twisted/towncrier
102Cake.recipe is exclusively deployed across multiple projects but only within their or-

ganization and with 74 stars.
103https://github.blog/2021-10-04-beta-github-releases-improving-release-experience/

https://github.com/cake-contrib/Cake.Recipe
https://github.com/github-tools/github-release-notes
https://github.com/twisted/towncrier
https://github.blog/2021-10-04-beta-github-releases-improving-release-experience/


30 Jianyu Wu et al.

Fig. 9: Basic Information of Popular Tools to Generate RNs in our Dataset

4.2.3 Presentation Enhancement (76)

In Section 3.2.2, we introduce the negative impact of the presentation of RNs,
such as increasing the time required for users to access valuable information,
annoying readers, and causing import changes to be overlooked by the im-
pacted users. Based on the issues under the Language and Usability categories,
as well as the issues related to Request for Enhancement, Workflow Man-
agement, Request for Automation and Missing Known Issues, we identify 76
solutions to improve the presentation of RNs:

– Hierarchical Structure (26): Utilizing a hierarchical structure and catego-
rizing the changes into sections or headings based on their significance or
functionality can fulfill the specific needs of the audience. The recommenda-
tions include 1) organizing changes into a separate section,104 rather than
a plain list; 2) highlighting important or breaking changes;105 3) restruc-

104https://github.com/cockroachdb/cockroach/issues/57898
105https://github.com/EOSIO/eos/issues/9903

https://github.com/cockroachdb/cockroach/issues/57898
https://github.com/EOSIO/eos/issues/9903


Title Suppressed Due to Excessive Length 31

turing current sections by incorporating new ones such as “Enhancements”
or “Known Issues”.106

– Rendering (24): Rendering RNs by using a lightweight markup language,
such as Markdown, instead of plain text, offers multiple benefits. It can
improve the consistency of RNs across various platforms and devices, such
as web browsers and mobile devices. Additionally, it enhances the read-
ability and visual appeal of the RNs, making them more engaging and
user-friendly. For example, a developer claims “when I go to packages I
already use to see what’s changed between releases, the Release Notes for
that package show unformatted markdown, which is difficult to read com-
pared to the rendered form”.107 To ensure that the importance of breaking
changes is readily apparent, using markups (e.g., icons or emojis) to high-
light breaking changes is strongly recommended.108

– Standardized Format (17): RN formats can be standardized by implement-
ing various standardization, such as date format,109 file names, and version
schemas,110 phrasal verbs for sections, sentence case for captions, and di-
agram labels, etc.111

– Folding Mechanism (8): Incorporating a folding mechanism in RNs can be
a valuable addition. They can shorten RNs and fold a lengthy list of details
to focus on the specific changes they are interested in, reducing information
overload and providing a more streamlined reading experience for users by
using detail/summary tags provided by GitHub Release Page,112 HTML
or Markdown features.113

A case proposes that by implementing reverse chronological lists of new
features, breaking changes, and bug fixes, the reading experience for non-
incremental release notes will be greatly improved.114

4.2.4 Completeness Validation (54)

Due to limited manpower or time available for conducting thorough inspections
and the challenge of comprehending all changes between versions, RNs are
more frequently affected by completeness problems, such as PR/Issue/Commit
Management, Missing New Features, Missing Links, Wrong/Broken Links,
Missing Attribution and Unwanted Misc Changes. Additionally, difficulties
arise in preparing relevant PRs, issues, and commits for RNs, as highlighted
in Section 3.2.4.

106https://www.github.com/elastic/security-docs/issues/564
107https://github.com/NuGet/NuGetGallery/issues/8889
108https://github.com/charleskorn/kaml/issues/138
109https://github.com/bigcommerce/cornerstone/issues/1990
110https://github.com/mr-ice/maptool-macros/issues/112
111https://github.com/StyleGuides/WritingStyleGuide/issues/268
112https://github.com/prisma/prisma/issues/5913#issuecomment-788326709
113https://github.com/vaadin/platform/issues/2178
114https://github.com/chef/automate/issues/2141

https://www.github.com/elastic/security-docs/issues/564
https://github.com/NuGet/NuGetGallery/issues/8889
https://github.com/charleskorn/kaml/issues/138
https://github.com/bigcommerce/cornerstone/issues/1990
https://github.com/mr-ice/maptool-macros/issues/112
https://github.com/StyleGuides/WritingStyleGuide/issues/268
https://github.com/prisma/prisma/issues/5913#issuecomment-788326709
https://github.com/vaadin/platform/issues/2178
https://github.com/chef/automate/issues/2141


32 Jianyu Wu et al.

Through 54 selected solutions, we find that systematic and structured ap-
proaches to labelling and organizing PR/commits/issues can mitigate the chal-
lenges of completeness validation:

– Pull Requests (30): several large projects adopt labeling each PR with pre-
defined labels to apply the sanity check115. In the case of pytorch/vision,
developers reach a consensus on categorizing each PR with labels describ-
ing affected components and changed types (e.g. breaking changes and
improvements).116

– Commits (14): developers prefer to adopt a convention for writing struc-
tured commit messages (e.g., Conventional Commits) so that changes (e.g.,
features, fixes, and breaking changes) in a commit can be documented in
a machine-parsable way. Some mature tools have been developed to assist
in detecting compliance with conventions, such as commitlink.117

– Issues (6): many developers adopt the milestone mechanism on GitHub
for progress tracking.118 Some projects create each milestone using version
numbers and group relevant issues into milestones,119 which reduces the
scope of review when developers write RNs.

Besides, the other four solutions propose that for each change description in
RNs, RN producers can add links to the corresponding PR, issue, and commit,
so that its completeness can be easily validated.120

4.2.5 Collaboration Management (22)

Collaboration is crucial in producing RNs because the process often requires
the involvement of multiple developers. Within the leaf nodes of Workflow
Management,Who to Produce,Workflow Management, and PR/Issue/Commit
Management, 22 solutions aim to enhance communication and transparency
among internal developers, ensuring the accuracy and efficiency of the RN
production process.

– Offer Guidances (15): Projects can provide guidance and templates to
streamline the production of RNs, reducing the time and effort required to
contribute. This includes instructions on creating and organizing RNs, as
well as specifying the necessary information to be included.121

– Clarify Responsibilities (4): Projects can clarify RN producers’ responsibil-
ities, such as editing, reviewing, and publishing RNs.122,123 Some develop-

115https://github.com/shipwright-io/build/pull/771
116https://github.com/pytorch/vision/issues/3351
117https://github.com/athensresearch/athens/issues/642
118https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/

about-milestones
119https://github.com/kubernetes-sigs/multi-tenancy/issues/916
120https://github.com/elastic/observability-docs/issues/703
121https://github.com/govuk-react/govuk-react/issues/507
122https://github.com/kubernetes/test-infra/issues/9098
123https://github.com/kubernetes/release/issues/1889

https://github.com/shipwright-io/build/pull/771
https://github.com/pytorch/vision/issues/3351
https://github.com/athensresearch/athens/issues/642
https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/about-milestones
https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/about-milestones
https://github.com/kubernetes-sigs/multi-tenancy/issues/916
https://github.com/elastic/observability-docs/issues/703
https://github.com/govuk-react/govuk-react/issues/507
https://github.com/kubernetes/test-infra/issues/9098
https://github.com/kubernetes/release/issues/1889


Title Suppressed Due to Excessive Length 33

ers adopt pre-publishing the drafts of RNs to facilitate collaboration with
other teams, such as translation efforts.124

– Distribute Workloads (3): Collaboratively producing RNs among all con-
tributors instead of relying on a centrally responsible developer for produc-
ing RNs.125 For example, some projects require that each PR description
include the RNs entry in its description, including the affected submodule
name and a list of changes for that submodule.126

4.2.6 Link Standardization (19)

RN-related issues under Wrong/Broken Links, Wrong/Broken Links to RNs,
and Missing Links, highlight the problem of incorrect or broken links that
hinder users from accessing the intended websites. These issues can have a
detrimental effect on the user experience and increase search costs, although
they can be promptly resolved. To establish systematic standardization for
link checking and management, developers have implemented three strategies
to mitigate this problem:

– Formatting Link (12): Implementing a consistent and fixed link format for
RNs is effective in maintaining the validity and predictability of the links.
For example, a URL ending with ”/latest” always redirects to the most
recent RN.127 Developers also suggest providing an absolute path instead
of a relative path128 can reduce potential broken risks, e.g., in READMEs.

– Periodical Verification (4): Checking invalid links regularly in a RN can
mitigate this problem, e.g., a developer from mantidproject/mantid men-
tions that they need to go over the release and check links work before
releasing.129 Some developers also suggest a link checker should be intro-
duced into the project to mitigate the problem.130

– Centralized Management (3): Another strategy adopted is to maintain a
centralized webpage, similar to arxiv.org, that contains the links or con-
tent for each RN.131 This allows users to quickly browse through the RNs
and access the desired information.

4.2.7 Synchronization Management (18)

The RN producers bear an additional burden in maintaining the consistency
of RNs across multiple locations (such as GitHub Releases, project websites,
etc.) and RNs with other documentation.132 18 solutions adopt automating

124https://github.com/KurtBestor/Hitomi-Downloader/issues/3561
125https://github.com/edmcouncil/fibo/issues/964
126https://github.com/sympy/sympy/wiki/Writing-Release-Notes
127https://github.com/3drepo/3drepo.io/issues/2502
128https://github.com/semanticarts/gist/issues/422
129https://github.com/mantidproject/mantid/issues/31371
130https://github.com/opensearch-project/opensearch-build/issues/698
131https://github.com/cockroachdb/docs/issues/10963
132https://github.com/newrelic/docs-website/issues/2127

https://github.com/KurtBestor/Hitomi-Downloader/issues/3561
https://github.com/edmcouncil/fibo/issues/964
https://github.com/sympy/sympy/wiki/Writing-Release-Notes
https://github.com/3drepo/3drepo.io/issues/2502
https://github.com/semanticarts/gist/issues/422
https://github.com/mantidproject/mantid/issues/31371
https://github.com/opensearch-project/opensearch-build/issues/698
https://github.com/cockroachdb/docs/issues/10963
https://github.com/newrelic/docs-website/issues/2127


34 Jianyu Wu et al.

this process to improve RN synchronization management by the following
mechanisms:

– Synchronous Distribution (16): Upload/push a final RN to various loca-
tions automatically, such as Telegram133, and web pages134. Two off-the-
shelf tools have been identified by developers to accomplish the task, i.e.,
telegram-action135 and Upload files to a Github release136.

– Synchronous Verification (2): Enforce an synchronous check to ensure RNs’
existence. The developers recommend monitoring the directory for the pres-
ence of RNs and providing timely alerts.137

4.2.8 Timely Delivery (17)

Our results in Section 3.2.4 indicate that developers frequently encounter dif-
ficulties in promptly creating and releasing RNs. They must strike a balance
between their development tasks and the responsibility of documenting and
communicating the changes. As a result, RNs may not be regularly updated,
leading to confusion and frustration among users. 17 solutions propose two
strategies that aim to improve the timeliness of RN production and prevent
user disappointment:

– Deadline Required (10): It motivates RN producers to prioritize the timely
delivery of RNs by assigning a specific deadline138 or announcing the adop-
tion of a formal release cycle139 to the users;

– Sequence Required (7): It involves making it a mandatory step for devel-
opers to complete the RNs before the release of a new version140 or si-
multaneously with the building of the release, which prioritizes the timely
delivery and update of RNs alongside their development tasks.141

Summary: We identify eight categories of strategies to resolve the correspond-
ing issues, including the identification of appropriate locations and channels
for RNs (149), automation recommendations (128), enhancing the presentation
of RNs (76), validating RN completeness through PR/issue/commit manage-
ment (54), checking and managing links (19), improvement in collaboration
management (22) and synchronization management (18) and establishing con-
ventions for timely RN delivery (17).

133https://github.com/wabarc/wayback/issues/48
134https://github.com/newrelic/node-newrelic/issues/590
135https://github.com/appleboy/telegram-action
136https://github.com/marketplace/actions/upload-files-to-a-github-release
137https://github.com/kubernetes/test-infra/issues/18309
138https://github.com/USAJOBS-temp/openoppstasks/issues/376
139https://github.com/girder/cookiecutter-girder-4/issues/45
140https://github.com/microsoft/ApplicationInsights-Java/issues/1682
141https://github.com/Dynatrace/dynatrace-configuration-as-code/issues/5

https://github.com/wabarc/wayback/issues/48
https://github.com/newrelic/node-newrelic/issues/590
https://github.com/appleboy/telegram-action
https://github.com/marketplace/actions/upload-files-to-a-github-release
https://github.com/kubernetes/test-infra/issues/18309
https://github.com/USAJOBS-temp/openoppstasks/issues/376
https://github.com/girder/cookiecutter-girder-4/issues/45
https://github.com/microsoft/ApplicationInsights-Java/issues/1682
https://github.com/Dynatrace/dynatrace-configuration-as-code/issues/5


Title Suppressed Due to Excessive Length 35

Table 3: Comparison of Most Frequent RN Content in Different Taxonomies.

Moreno et al. (2017) Bi et al. (2020)

Fixed Bugs (90%) Issues Fixed (79.3%)
New Features (46%) New Features (55.1%)
New Code Components (43%) System Internal Changes (25.1%)
Modified Features (26%) Non-functional Requirements (10.3%)
Refactoring Operations (21%) Documentation Updates (9.5%)

Ours (Completeness)∗ Ours (Correctness)∗

Breaking Changes (23.36%) Links (44.14%)
New Features (12.77%) Version Information (14.48%)
Links (10.95%) Dependency Specifications (11.03%)
Dependency Specifications (10.95%) Identifiers (7.59%)
Migration/Usage Instructions (6.20%) Code Examples (6.21%)

∗ The percentages here are different from the taxonomy because the denomi-
nators are the total number of issues in the Completeness (274 issues) and the
Correctness (145 issues) category, respectively. In the Completeness column,
issues from Missing and Insufficient are merged.

5 Discussion

5.1 Comparison with the Related Work

Since previous works categorize RN content into different taxonomies (Bi et al.,
2020; Moreno et al., 2017), it is not easy to perform a detailed comparison of
our results with theirs (mapping results from different work can be a possibility
for future studies). We can still observe some interesting differences from the
most frequently occurring RN content in different taxonomies (Table 3): 1)
breaking changes and links are more likely to have issues but they are not
listed as a major category in previous taxonomies; 2) new features and bug
fixes are not likely to have issues even if they occur most frequently in previous
taxonomies; 3) some information frequently desired by users is not mentioned
in previous work, such as migration/usage instructions, code examples, and
dependency specifications. Our lens of observation sheds light on the most
fragile parts of RNs untouched in previous taxonomies. The taxonomy in our
paper also extends the work of Bi et al. (2020) with a significant amount of new
empirical evidence and actionable implications. For example, they find in their
RQ2.2 that clear structure and the writing styles of RN documentation are
vital. We go one step further and identify concrete evidence on how structure
and style impact users, which we further derive into actionable advice on how
to write and organize RNs.

Compared with our previous conference work (Wu et al., 2022), this paper
expands the dataset of RN-related issues from the period between January
2021 and June 2021 to encompass the entire year 2021. The extended dataset
includes an additional 620 RN-related issues, which proves valuable for com-
prehending the taxonomy and the associated strategies. Regarding the tax-



36 Jianyu Wu et al.

onomy, these extra issues contribute to a more comprehensive and in-depth
examination in the following ways: 1) enrich the details of the leaf nodes within
the taxonomy, such as introducing the Image Formatting leaf node under the
Poor Formatting subcategory and the Excessive Notification leaf node within
the Accessibility dimension; 2) confirm the saturation reached in the previous
paper (only adding new leaf nodes). In the work of Wu et al. (2022), saturation
is achieved in the third round with approximately 697 leaf nodes. In this pa-
per, we randomize our data, repeat the labeling process, and reach saturation
in the third round with a total of 1,171 leaf nodes. Thus, our experience offers
valuable guidance for determining the number of labels among these range
required for similar labeling tasks (Aghajani et al., 2019; Beyer et al., 2018;
Chen et al., 2020; Tan and Zhou, 2019; Zhang et al., 2019a). In addition, this
paper further explores the strategies to resolve these RN-related issues. Taking
into account that not each issue provides a definitive solution (only one-third
of the issues explicitly include the strategies in our dataset), the expanded
dataset from the entire year of 2021 allows us to develop a comprehensive
understanding of how these strategies contribute to issue resolution, with a
particular focus on valuable strategies, such as the Periodically Verification
strategy under Section 4.2.6.

5.2 Implications

5.2.1 Strategies Preference

Based on the results of RQ1 and RQ2, we will discuss what makes developers
prefer some strategies over others in this section. Furthermore, we will also
discuss that some mappings are not observed in Figure 7 and propose potential
strategies to mitigate the associated challenges.

 How to select suitable tools to automate RN generation? A total of 26
tools (mentioned in Section 4.2.2 are being finally utilized by developers. In
Figure 9, we have presented the fundamental details of the most frequent
tools adopted by developers. To gain insights into the factors influencing their
choices of RN generation methods, we have thoroughly examined the titles,
descriptions, labels, and comments of each RN-related issue within the Au-
tomation category. Based on our analysis, we have identified the following
factors that should be considered when selecting appropriate automated tools
or scripts:

– Feature: While popular tools are able to automate the categorization and
grouping of input sources,142 developers may have specific requirements
that these tools can not fulfill, such as supporting generating RNs for mul-

142https://github.com/executablebooks/github-activity/issues/58

https://github.com/executablebooks/github-activity/issues/58


Title Suppressed Due to Excessive Length 37

tiple branches,143 multiple projects,144 and add supplement details for the
changes.145

– Cost : Developers weigh the decision to adopt such tools by evaluating the
additional costs introduced for all stakeholders involved in the software
development process. They evaluate the costs of adopting such tools, in-
cluding the need to learn new skills/technology and comply with certain
practices.146

– Integration: Some developers prefer tools that can be integrated seam-
lessly with the existing workflow and development environment, rather
than those that require extra steps or a completely new process. For exam-
ple, one developer supports the adoption of Semantic Release, because
it works with react/next, and I guess everything related to js/ts.147

– Input : The granularity and scope of input sources are important factors
for developers to consider when choosing a tool, as they must determine
which input sources are appropriate for their projects.148

– Customization: Custom scripts offer full control over the RN generation
process and can be tailored to specific needs and requirements of the
project, while existing tools are designed universally, limiting some cus-
tomization features. For example, the developer who is not satisfied with
popular generation solutions may choose to write a custom script for their
project to avoid branch conflict and circumvent the need to label informa-
tion.149

– Configuration Friendliness: Developers prioritize the ease of use and intu-
itiveness of RN generation tools.150 Some tools, such as Semantic Release,
provide an interactive plugin semantic-release-cli151 that simplifies the
configuration process.

– Maintenance: Community support for RN generation tools is an important
factor in the tool selection for developers. For example, one developer in-
tends to use the release features provided by GitHub for RN generation in
order to reduce the maintenance burden rather than github-activity.152

 Which are the most suitable locations to place RNs and manage them
synchronously? Developers usually adopt the five following locations & chan-
nels for publicizing RNs: GitHub Release Pages, Project Websites, Files in
Repositories, Apps, and Instant Messaging Channels. It is advisable to care-
fully consider the trade-offs of each location/channel for placing RNs:

143https://github.com/release-drafter/release-drafter/issues/844
144https://github.com/rfennell/ReleaseNotesAction/issues/131
145https://github.com/kubernetes/release/issues/1354
146https://github.com/dzcode-io/dzcode.io/issues/389
147https://github.com/dzcode-io/dzcode.io/issues/389
148https://github.com/cookpad/terraform-aws-eks/issues/183
149https://github.com/lightningnetwork/lnd/issues/6091
150https://github.com/jazzband/django-redis/issues/535
151https://github.com/semantic-release/cli
152https://github.com/executablebooks/github-activity/issues/58

https://github.com/release-drafter/release-drafter/issues/844
https://github.com/rfennell/ReleaseNotesAction/issues/131
https://github.com/kubernetes/release/issues/1354
https://github.com/dzcode-io/dzcode.io/issues/389
https://github.com/dzcode-io/dzcode.io/issues/389
https://github.com/cookpad/terraform-aws-eks/issues/183
https://github.com/lightningnetwork/lnd/issues/6091
https://github.com/jazzband/django-redis/issues/535
https://github.com/semantic-release/cli
https://github.com/executablebooks/github-activity/issues/58


38 Jianyu Wu et al.

1) In terms of facilitating collaboration and management, GitHub Release
Pages and files in Repositories are convenient options. GitHub Release Pages
provide a dedicated location for internal developers to edit and manage RNs
on the website. Additionally, using RN files in repositories makes the repos-
itory more self-contained, allowing for collaborative editing with tools like
Git. The OpenStack community, for example, requires the inclusion of RN
files in projects to record version changes, as it enables working on multiple
patches simultaneously and reduces merge conflicts; 2) Regarding accessibility,
Project Websites, Apps, and Instant Messaging Channels are better choices.
The official project website serves as a centre for showcasing and communi-
cating RNs, which is easily discoverable through search engines. Embedding
RNs within the application allows users to easily access and view the latest
updates and changes while using the application, enhancing visibility and con-
venience. Sending RNs through instant messaging channels enables real-time
communication of important updates and changes to developers and users, en-
suring timely dissemination of information; 3) In terms of maintenance costs,
Instant Messaging Channels, GitHub Release Pages, and Files in Repositories
are better choices compared to the other options. Embedding RNs within the
application and maintaining a project website may require additional devel-
opment, integration and maintenance efforts to ensure the proper display and
delivery of RNs.

In Section 4.2.7, we find that developers adopt the mechanisms of syn-
chronous distribution and verification to maintain the consistency of RNs in
different locations and auto-check the RN’s existence. A better approach might
be to involve combining the location strategies and synchronization manage-
ment mechanisms to produce high-quality RNs.

 How to improve the RN presentation? An analogy to the RN presen-
tation issues is the relationship between content and directory: if the content
is misplaced or not indexed, it is easy to miss the content you are interested
in.153,154. Two main challenges, i.e., Usability and Language, in Section 3.2.2
provide the evidence that layout indeed greatly influences RN reading expe-
rience, as also mentioned by (Bi et al., 2020). Among the four strategies to
relieve the RN presentation challenge, Hierarchical Structure provides a clear
organization that allows users to quickly browse and selectively read specific
sections based on their interests and needs. However, it requires careful de-
sign and maintenance of the structure to ensure that each section is clear and
properly reflects the importance of the updates, imposing extra labour on RN
producers. From these issues and their related RNs, we find that several hier-
archical structures can be used to separate changes into categories and better
organize RNs. Based on results in Section 3.2.2, we recommend two strate-
gies to group changes: 1) by type of change (e.g. new features, fixed bugs,
breaking changes); 2) by affected component (e.g. the network module). The
two strategies can be combined (e.g., first by component and then by type of

153https://github.com/electron/electron/issues/28375
154https://github.com/EOSIO/eos/issues/9903

https://github.com/electron/electron/issues/28375
https://github.com/EOSIO/eos/issues/9903


Title Suppressed Due to Excessive Length 39

change) (Wu et al., 2023). We also recommend putting the most important
changes (e.g., breaking changes, major new features) on top. It is worth not-
ing that our strategies match with the Information Architecture models (Li
et al., 2017) that focus on effectively structuring, organizing, and labeling the
content. Standardized Format improves consistency and comprehensibility of
the information, while it also requires developers to adhere to and apply stan-
dardized formatting. Rendering and Folding Mechanism are great options to
emphasise key changes and attract users’ attention by using different format-
ting, e.g., icons.155 Thus, after the structure is determined, it is recommended
to employ a standardized format combined with proper visualization and fold-
ing lengthy lists to highlight important changes.

When investigating issues under Bad Writing Style, a case attracts our
attention, i.e., RN should be funny and cryptic in app stores to attract non-
technical end users but concise and clear on GitHub to deliver information
efficiently. Because the requirements of users differ from those of internal de-
velopers, we also recommend projects to provide different RNs in different
writing styles to serve different audiences (stakeholders). For example, Apache
Camel provides two types of RNs: one is more generalized and summarized
intended for the end users,156 while the other is a list of all issues that have
been resolved under this update intended for someone who needs technical
details.157

 Which strategy is more effective to ensure RNs’ completeness? The RN-
related issues under Completeness category highlight the importance of en-
suring comprehensive and reliable information in RNs. Our findings in Sec-
tion 5.2.2 highlight two primary reasons for completeness problems: 1) insuf-
ficient resources or time to conduct thorough inspections; 2) difficulty for a
limited number of developers to comprehend all changes between versions.
Figure 9 demonstrates that tools adopt diverse management strategies for
PRs, issues, and commits to ensuring completeness in RN production. PRs
often provide a higher-level description of changes in a user-friendly manner,
while commits are typically presented in a code-oriented fashion, making it
challenging for non-technical users to understand and interpret each commit’s
meaning and impact. For projects that lack a strict collaboration and re-
view process, it is better to combine these two types of information to ensure
completeness. Issues contain detailed descriptions, reproduction steps, and so-
lutions related to specific problems, making them suitable for feature-driven
projects (Michlmayr, 2007). However, due to the abundance of information,
only a portion of it is relevant to the RNs, which requires additional time to
organize. If the project is configured with Jira, it is recommended to utilize
Issues for generating RNs.158

155https://github.com/charleskorn/kaml/issues/138
156https://camel.apache.org/blog/2021/06/Camel311-Whatsnew/
157https://camel.apache.org/releases/release-3.11.0/
158https://support.atlassian.com/jira-cloud-administration/docs/

create-release-notes/

https://github.com/charleskorn/kaml/issues/138
https://camel.apache.org/blog/2021/06/Camel311-Whatsnew/
https://camel.apache.org/releases/release-3.11.0/
https://support.atlassian.com/jira-cloud-administration/docs/create-release-notes/
https://support.atlassian.com/jira-cloud-administration/docs/create-release-notes/


40 Jianyu Wu et al.

 Which strategy is appropriate for developers to produce RN timely? in
Section 4.2.8, we observe that developers typically employ two strategies to
ensure the timely production of RNs: 1) establishing the sequence conventions,
like mandate completion before the release; 2) setting clear deadlines or en-
forcing strict release cycles for RN production. The former fosters a sense of
responsibility and ensures that the necessary preparation work for RNs is com-
pleted prior to the release. However, there is a risk that the release itself may be
overlooked or delayed, despite having accompanying RNs; The latter involves
time requirements. It provides a clear time limit and motivates developers to
finish their work before the designated deadline, which is particularly suit-
able for projects that require scheduled releases, such as LibreOffice159. These
two strategies are well-suited respectively for feature-driven and time-driven
projects (Michlmayr, 2007). It is important to note that these two approaches
can not coexist harmoniously (Rossi et al., 2009), that is, to release on time
with the desired level of quality, a project may need to sacrifice certain fea-
tures. Conversely, if a project aims to deliver a set of high-quality features, it
may have to accept a delay.

 How to effectively collaborate to produce and manage RNs? We have
identified three strategies to enhance collaboration, communication, and trans-
parency among developers: offering guidance, clarifying responsibilities, and
distributing workloads. The strategy of offering guidance provides a clear
framework on how to effectively collaborate in order to produce RNs. By
clearly defining each team developer’s responsibilities and permissions, devel-
opers can gain a clear understanding of their roles within the collaborative
process, promoting accountability and reducing confusion. Properly distribut-
ing workloads can reduce the pressure on RN producers before releasing new
releases to the daily code reviews. In practice, a more effective approach may
need to combine these strategies and adjust them based on the specific needs
and circumstances of the project.

 How to ensure that the link is valid? Broken or incorrect links often
lead to a negative user experience and increase the time and effort required
for searching. It is effective to maintain a central website, adopt a fixed link
format, and regularly check the validity of the links to mitigate this problem.
However, they are not always silver bullets. Maintaining a dedicated website
with RNs also introduces the challenge of link maintenance, which can tem-
porarily disrupt access to RNs. Additionally, if the fixed link format needs
to be updated in the future, it is necessary to modify existing links within
all other documentation and websites.160 Regularly checking for invalid links
requires continuous effort and resources. Depending on the frequency of re-
leases and the number of links involved, manually verifying all the links can
become time-consuming. An effective solution is to combine these approaches
into a link standardization process with guidelines for link creation, updates,
and removal. This can be further facilitated by utilizing existing tools such

159https://endoflife.date/libreoffice
160https://github.com/hedgedoc/hedgedoc/pull/1114/files

https://endoflife.date/libreoffice
https://github.com/hedgedoc/ hedgedoc/pull/1114/files


Title Suppressed Due to Excessive Length 41

as Xenu Link Sleuth161, HTML Link Validator162 and webmaster tools163, to
streamline the effort.

 Why do we have missing strategies for some RN-related issues? We find
that there are some missing maps of relevant strategies and RN-related issues,
which can be attributed to two factors: 1) certain RN-related issues have a
relatively low number, like Missing License Changes. Consequently, there is a
scarcity of specific strategies available for addressing these issues; 2) many of
these issues can be easily resolved by the developers, such as by adding more
comprehensive information to clarify the changes (like Insufficient) and fixing
the bugs (like Language and Correctness) without mentioning specific strategies
to alleviate or prevent such problems.

From Figure 3 - Figure 7, our framework of strategies effectively covers
most issues within our taxonomy of RN-related issues, with the exception of
many issues under the Content dimension. In Section 3.2.1, we have proposed
strategies for completeness validation by efficiently managing PRs, issues, and
commits to mitigate the problem of Completeness. However, it remains unclear
what specific information should be included in RNs. We also find that other
studies (Abebe et al., 2016; Bi et al., 2020; Moreno et al., 2017) show different
distributions compared with the most frequent RN content identified in our re-
sults (Table 3), which indicates that some types of information are more likely
to be missed or incorrect than others. Therefore, we recommend RN producers
to check whether the following eight kinds of changes have been described in
RNs: 1) Breaking Changes, 2) New Features, 3) Enhancements, 4) Fixed Bugs,
5) Documentation Changes, 6) Dependency/Environment Changes, 7) Secu-
rity Changes, and 8) License Changes. We also find that additional information
that benefits better understanding and tracking of these changes, e.g. links to
corresponding PRs/issues/commits, is preferred by users. We therefore rec-
ommend including, where necessary, the following eight kinds of explanatory
information in RNs: 1) Links to Change-Related PRs, Issues, and Commits, 2)
Guides (e.g. upgrade, migration, or setup guides), 3) Code Examples, 4) De-
pendency/Environment Specification, 5) Attributions (e.g. authors, reviewers,
commenters, etc.), 6) Explanation for Jargon-Heavy Descriptions, 7) Version-
ing Information (e.g. release time, version name/number, setup package, etc),
and 8) Known Issues.

5.2.2 Automating RN Production

Apart from the tool-specific problems in Section 3.2.4, we further summarize
the following research directions that may greatly help automate RN genera-
tion and resolve RN-related issues:

3 Automated Labeling of Software Changes. Our results in Section 3.2.4
show that many developers request tools to automate RN production. How-
ever, to the best of our knowledge, existing tools have strong constraints on

161https://home.snafu.de/tilman/xenulink.html.
162https://html-link-validator.en.softonic.com/
163https://www.bigcommerce.com/ecommerce-answers/what-google-webmaster-tools/

https://home.snafu.de/tilman/xenulink.html.
https://html-link-validator.en.softonic.com/
https://www.bigcommerce.com/ecommerce-answers/what-google-webmaster-tools/


42 Jianyu Wu et al.

input. Some well-known tools, e.g. github-activity and Release Drafter,
require a compatible PR label system. Semantic Release requires develop-
ers to write commit messages following a specific rule (e.g., Angular Commit
Message Conventions). This enforces developers to specify which category a
commit belongs to manually. These preconditions limit their application scope,
and the whole project needs to change its production process to adapt to it.164

Techniques for automated commit or PR classification, which we consider as a
promising direction, can alleviate this problem. Existing commit classification
methods (e.g., Ghadhab et al. (2021); Levin and Yehudai (2017)) mainly fo-
cus on classifying commits into three maintenance categories (i.e., corrective,
adaptive, and perfective) proposed by Swanson (1976), which is not suitable
for RN generation. Therefore, classifying commits into categories suitable for
RN generation is needed to facilitate automated RN generation. Similar dis-
crepancies also exist for works on PR classification (Jiang et al., 2021b; Yu
et al., 2018).

3 Automated Summarization and Language Style Unification. As reflected
in Section 3.2.2, a fluent and unified writing style is vital to RN Language. How-
ever, existing tools generate RNs by integrating existing text, e.g. PR titles
and commit messages, which not only violates RNs’ fundamental principle (it
should focus on the impact for the user and make that understandable ),165

but also offloads the quality responsibility to developers writing other devel-
opment texts, like PR titles. This often leads to poor readability of the final
generated RNs. With advances in natural language preprocessing (NLP) tasks
like text summarization (El-Kassas et al., 2021) and style transfer (Toshevska
and Gievska, 2021), it will be interesting to explore approaches that summa-
rize existing development text and unify language style for automated RN
generation.

3 Automated Testing of RNs. As shown in Section 3.2.1, Completeness and
Correctness are the key to a high quality RN. The manual practices are hardly
a strong guarantee for reducing the risk of incompleteness or incorrectness.
To the best of our knowledge, there is still no tool designed for testing (i.e.,
inconsistency checking) of RNs’ content. Challenges for facilitating such testing
may include: 1) checking the consistency between natural language description
and software changes; and 2) checking the consistency between documentation
from different sources (e.g., RNs and usage guides, in Section 3.2.4). Similar
works for, e.g., checking code comment inconsistency (Tan et al., 2007; Zhai
et al., 2020), may be a good starting port for exploring the possibility of such
a tool. Furthermore, since users perceive breaking changes as important but
frequently missing in RNs (Section 3.2.1), it is vital to prioritize the detection
of breaking changes and update incompatibilities (Lam et al., 2020).

164https://github.com/opentelekomcloud/terraform-provider-opentelekomcloud/

pull/1164
165https://docs.openstack.org/project-team-guide/release-management.html#

how-to-add-new-release-notes

https://github.com/opentelekomcloud/terraform-provider-opentelekomcloud/pull/1164
https://github.com/opentelekomcloud/terraform-provider-opentelekomcloud/pull/1164
https://docs.openstack.org/project-team-guide/release-management.html#how-to-add-new-release-notes
https://docs.openstack.org/project-team-guide/release-management.html#how-to-add-new-release-notes


Title Suppressed Due to Excessive Length 43

5.3 Threats to Validity

5.3.1 Internal Validity

Our taxonomy and framework construction are based entirely on manual anal-
ysis, which may introduce subjectivity and labeling errors. To mitigate these
threats, we include two inspectors and one arbitrator in the process, all with
rich development experience. To ensure the quality of the taxonomy, we con-
duct multiple iterative rounds to refine the taxonomy and incorporate feedback
from industrial developers. We also measure inter-rater reliability to ensure
that the taxonomy is precisely defined and reproducible.

5.3.2 External Validity

Our work only uses data from GitHub projects for categorizing RN-related is-
sues, which means that our results may not be generalized to another context
(e.g., industry projects). Since GitHub is a huge and diverse coding platform
and the projects involved in our analysis are of high quality, we believe our
results reveal valuable insights and practical challenges in RN production and
usage. To further confirm our belief, we invite three industry developers to
validate whether our taxonomy can cover the RN-related issues they have en-
countered. To mitigate the risk of generalizability, we investigate RN-related
features provided by other mainstream code hosting platforms, such as Git-
Lab166 and Bitbucket167, to evaluate the applicability of the taxonomy and
strategies proposed in this paper. Due to the platform-specific features, the
frequency of issues and strategies may vary on different platforms. For exam-
ple, official RN generation functions and special tools that rely on GitHub
Action features, such as Release Drafter, can not be used directly on Git-
Lab and be recommended by developers on GitLab; While Bitbucket provides
auto-generated features for RNs, it primarily relies on Jira for generating RNs
based on issues, rather than using PRs on GitHub. These platform-specific
features primarily affect issues and strategies related to Production dimen-
sion, such as Request for Automation and PR/Issue/Commit Management.
However, their impact on issues and strategies related to Content and Pre-
sentation dimensions is limited. Our findings still provide valuable insights for
ensuring the production of high-quality RNs and guiding the functional design
of other platforms. Moreover, the limited number of developers also poses a
threat, which we find hard to mitigate because it is not easy to locate industry
developers experienced with RNs. Future work may be able to gain different
insights through other data sources or interviews/surveys on a larger scale.

Moreover, the scarcity of RN-related issues poses a potential challenge to
this paper. After applying filtering criteria, on average, there may be slightly
more than one issue per year per project. However, several factors can help

166https://docs.gitlab.com/ee/user/project/releases/
167https://support.atlassian.com/jira-cloud-administration/docs/

create-release-notes/

https://docs.gitlab.com/ee/user/project/releases/
https://support.atlassian.com/jira-cloud-administration/docs/create-release-notes/
https://support.atlassian.com/jira-cloud-administration/docs/create-release-notes/


44 Jianyu Wu et al.

comprehend this threat: 1) variations in RN practices: not all software reposi-
tories have the convention of writing RNs. Table 1 indicates that a significant
number of issues come from repositories with long development history, high
popularity, and active development activities; 2) specific audience of RNs:
RNs primarily target users who rely on the project. These users consult RNs
to understand incremental changes and assess the potential impact on their
software. However, developers may not read or comprehend all the changes,
making it inherently challenging to identify issues. Furthermore, not each prob-
lematic change will affect developers or be discovered by them; 3) frequency
of software releases: the number of software releases per year tends to be rela-
tively low, and the release cycles are often lengthy. For example, in our dataset,
PyTorch/PyTorch only released seven versions in 2021;168 We also collected
issues related to similar artifacts in software development (Aghajani et al.,
2019), such as “migration guides”, “API references”, and “user guides”, by
using the method described in Section 3.1.1. The respective numbers of issues
for these artifacts were 635, 747, and 535 in 2021, indicating a similar scarcity
in relation to RN-related issues. While acknowledging the relatively low fre-
quency of RN-related issues, it is crucial to recognize their significance. Even
a small number of issues can have a substantial impact if they affect critical
features or introduce vulnerabilities, such as Missing Breaking Changes within
the Content dimension. The rarity of these occurrences does not diminish the
importance of RN-related issues; instead, it highlights the necessity for diligent
attention and proactive measures to ensure the quality and accuracy of RNs,
which is also further supported by our findings in Section 3.2.

Another threat to external validity comes from using only issues with the
keyword “release note” in their titles. Many issues may still discuss RNs even
if they do not have the keyword in their titles. The threat can be mitigated by
the size of our dataset which is comparable to and even larger than existing
studies (Aghajani et al., 2019; Beyer et al., 2018; Chen et al., 2020; Tan and
Zhou, 2019; Zhang et al., 2019a).

6 Conclusion

In this paper, we manually analyze 1,529 latest RN-related issues on GitHub
and construct a taxonomy of real-world RN-related issues with four dimensions
and a framework with eight topics of strategies for resolving these challenges.
Our results demonstrate the gap for RN production and provide a research
roadmap for further improvement that we expect the community may benefit
from. In future work, we plan to investigate such opportunities for integrating
novel automation approaches with existing RN workflows.

168https://github.com/pytorch/pytorch/releases

https://github.com/pytorch/pytorch/releases


Title Suppressed Due to Excessive Length 45

7 Data Availability

A replication package includes all supplementary materials, which can be found
at https://figshare.com/s/b86957f784a8c872c042. This package includes:

– An Excel spreadsheet contains the complete issues and all of our analysis
about the RN-related issues;

– The scripts we used to collect, analyze, and visualize the data;
– A markdown contains the practitioner-oriented checklist for producing a

high-quality RN.

Acknowledgements This work is supported by the National Natural Science Foundation
of China Grant 61825201 and 62142201.

References

Abebe SL, Ali N, Hassan AE (2016) An empirical study of software re-
lease notes. Empirical Software Engineering 21(3):1107–1142, DOI 10.1007/
s10664-015-9377-5

Aghajani E, Nagy C, Vega-Márquez OL, Linares-Vásquez M, Moreno L,
Bavota G, Lanza M (2019) Software documentation issues unveiled. In: 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE),
IEEE, pp 1199–1210, DOI 10.1109/ICSE.2019.00122

Aghajani E, Nagy C, Linares-Vásquez M, Moreno L, Bavota G, Lanza M,
Shepherd DC (2020) Software documentation: the practitioners’ perspec-
tive. In: 2020 IEEE/ACM 42nd International Conference on Software Engi-
neering (ICSE), IEEE, pp 590–601, DOI 10.1145/3377811.3380405

Ahire JB (2021) Issue #156 of hypertrace/hypertrace. https://github.com/
hypertrace/hypertrace/issues/156

Alali A, Kagdi H, Maletic JI (2008) What’s a typical commit? a character-
ization of open source software repositories. In: 2008 16th IEEE Interna-
tional Conference on Program Comprehension, IEEE, pp 182–191, DOI
10.1109/ICPC.2008.24

Beyer S, Macho C, Di Penta M, Pinzger M (2018) Automatically classifying
posts into question categories on stack overflow. In: 2018 IEEE/ACM 26th
International Conference on Program Comprehension (ICPC), IEEE, pp
211–21110, DOI 10.1145/3196321.3196333

Bi T, Xia X, Lo D, Grundy J, Zimmermann T (2020) An empirical study
of release note production and usage in practice. IEEE Transactions on
Software Engineering DOI 10.1109/TSE.2020.3038881

Chen Z, Cao Y, Liu Y, Wang H, Xie T, Liu X (2020) A comprehensive study
on challenges in deploying deep learning based software. In: Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp 750–762,
DOI 10.1145/3368089.3409759

https://figshare.com/s/b86957f784a8c872c042
https://github.com/hypertrace/hypertrace/issues/156
https://github.com/hypertrace/hypertrace/issues/156


46 Jianyu Wu et al.

Coelho R, Almeida L, Gousios G, Van Deursen A (2015) Unveiling exception
handling bug hazards in android based on github and google code issues.
In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repos-
itories, IEEE, pp 134–145, DOI 10.1109/MSR.2015.20

El-Kassas WS, Salama CR, Rafea AA, Mohamed HK (2021) Automatic text
summarization: A comprehensive survey. Expert Systems with Applications
165:113679, DOI 10.1016/j.eswa.2020.113679

Ghadhab L, Jenhani I, Mkaouer MW, Ben Messaoud M (2021) Augmenting
commit classification by using fine-grained source code changes and a pre-
trained deep neural language model. Information and Software Technology
135:106566, DOI https://doi.org/10.1016/j.infsof.2021.106566, URL https:

//www.sciencedirect.com/science/article/pii/S0950584921000495

He H, He R, Gu H, Zhou M (2021) A large-scale empirical study on java
library migrations: prevalence, trends, and rationales. In: Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp 478–490

Holloway FW (1985) Praxis release notes, versions 7. 4 and 7. 5 URL https:

//www.osti.gov/biblio/5141606

Hove SE, Anda B (2005) Experiences from conducting semi-structured inter-
views in empirical software engineering research. In: 11th IEEE International
Software Metrics Symposium (METRICS’05), IEEE, pp 10–pp

Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P (2020)
Taxonomy of real faults in deep learning systems. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, pp
1110–1121, DOI 10.1145/3377811.3380395

Jiang H, Zhu J, Yang L, Liang G, Zuo C (2021a) Deeprelease: Language-
agnostic release notes generation from pull requests of open-source soft-
ware. In: 2021 28th Asia-Pacific Software Engineering Conference (APSEC),
IEEE, pp 101–110, DOI 10.1109/APSEC53868.2021.00018

Jiang J, Wu Q, Cao J, Xia X, Zhang L (2021b) Recommending tags for pull
requests in github. Information and Software Technology 129:106394, DOI
https://doi.org/10.1016/j.infsof.2020.106394

Kamezawa H, Nishida N, Shimizu N, Miyazaki T, Nakayama H (2022) Rnsum:
A large-scale dataset for automatic release note generation via commit logs
summarization. In: Proceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pp 8718–8735

Klepper S, Krusche S, Bruegge B (2016) Semi-automatic generation of
audience-specific release notes. In: 2016 IEEE/ACM International Work-
shop on Continuous Software Evolution and Delivery (CSED), IEEE, pp
19–22

Lam P, Dietrich J, Pearce DJ (2020) Putting the semantics into semantic
versioning. In: Proceedings of the 2020 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming
and Software, pp 157–179, DOI 10.1145/3426428.3426922

Levin S, Yehudai A (2017) Boosting automatic commit classification into
maintenance activities by utilizing source code changes. Association for

https://www.sciencedirect.com/science/article/pii/S0950584921000495
https://www.sciencedirect.com/science/article/pii/S0950584921000495
https://www.osti.gov/biblio/5141606
https://www.osti.gov/biblio/5141606


Title Suppressed Due to Excessive Length 47

Computing Machinery, New York, NY, USA, PROMISE, p 97–106, DOI
10.1145/3127005.3127016

Li M, Gao R, Hu X, Chen Y (2017) Comparing infovis designs with different
information architecture for communicating complex information. Commu-
nication Design Quarterly Review 5(1):43–56

Maalej W, Happel HJ (2010) Can development work describe itself? In:
2010 7th IEEE Working Conference on Mining Software Repositories (MSR
2010), IEEE, pp 191–200, DOI 10.1109/MSR.2010.5463344

Michlmayr M (2007) Quality improvement in volunteer free and open source
software projects: exploring the impact of release management. PhD thesis,
University of Cambridge

Moreno L, Bavota G, Penta MD, Oliveto R, Marcus A, Canfora G (2017)
Arena: An approach for the automated generation of release notes. IEEE
Transactions on Software Engineering 43(2):106–127, DOI 10.1109/TSE.
2016.2591536

Nath SS, Roy B (2021) Towards automatically generating release notes using
extractive summarization technique. In: International Conference on Soft-
ware Engineering & Knowledge Engineering, SEKE, pp 241–248

Nath SS, Roy B (2022) Exploring relevant artifacts of release notes: The prac-
titioners’ perspective. In: IEEE International Conference on Software Anal-
ysis, Evolution and Reengineering, SANER 2022, Honolulu, HI, USA, March
15-18, 2022, IEEE, pp 1270–1277, DOI 10.1109/SANER53432.2022.00152,
URL https://doi.org/10.1109/SANER53432.2022.00152

Olsson HH, Bosch J (2014) From opinions to data-driven software r&d: A
multi-case study on how to close the ’open loop’ problem. In: 2014 40th
EUROMICRO Conference on Software Engineering and Advanced Applica-
tions, IEEE, pp 9–16, DOI 10.1109/SEAA.2014.75

Rossi B, Russo B, Succi G (2009) Analysis of open source software develop-
ment iterations by means of burst detection techniques. In: Boldyreff C,
Crowston K, Lundell B, Wasserman AI (eds) Open Source Ecosystems: Di-
verse Communities Interacting, 5th IFIP WG 2.13 International Confer-
ence on Open Source Systems, OSS 2009, Skövde, Sweden, June 3-6, 2009.
Proceedings, Springer, IFIP Advances in Information and Communication
Technology, vol 299, pp 83–93, DOI 10.1007/978-3-642-02032-2\ 9, URL
https://doi.org/10.1007/978-3-642-02032-2_9

Seaman CB (1999) Qualitative methods in empirical studies of software engi-
neering. IEEE Transactions on software engineering 25(4):557–572

Shihab E, Ihara A, Kamei Y, Ibrahim WM, Ohira M, Adams B, Has-
san AE, Matsumoto Ki (2013) Studying re-opened bugs in open source
software. Empirical Software Engineering 18(5):1005–1042, DOI 10.1007/
s10664-012-9228-6

Swanson EB (1976) The dimensions of maintenance. In: Proceedings of the 2nd
International Conference on Software Engineering, IEEE Computer Society
Press, Washington, DC, USA, ICSE ’76, p 492–497

Tan L, Yuan D, Krishna G, Zhou Y (2007) /* icomment: Bugs or bad com-
ments? */. In: Proceedings of 21st ACM SIGOPS Symposium on Operating

https://doi.org/10.1109/SANER53432.2022.00152
https://doi.org/10.1007/978-3-642-02032-2_9


48 Jianyu Wu et al.

Systems Principles, pp 145–158, DOI 10.1145/1294261.1294276
Tan X, Zhou M (2019) How to communicate when submitting patches: An
empirical study of the linux kernel. Proceedings of the ACM on Human-
Computer Interaction 3(CSCW):1–26

Toshevska M, Gievska S (2021) A review of text style transfer using deep
learning. IEEE Transactions on Artificial Intelligence pp 1–1, DOI 10.1109/
TAI.2021.3115992

Wu J, He H, Xiao W, Gao K, Zhou M (2022) Demystifying software release
note issues on github. In: 2022 IEEE/ACM 30th International Conference
on Program Comprehension (ICPC), pp 602–613, DOI 10.1145/3524610.
3527919

Wu J, Xu W, Gao K, Li J, Zhou M (2023) Characterize software release
notes of github projects: Structure, writing style, and content. In: Zhang T,
Xia X, Novielli N (eds) IEEE International Conference on Software Analy-
sis, Evolution and Reengineering, SANER 2023, Taipa, Macao, March 21-
24, 2023, IEEE, pp 473–484, DOI 10.1109/SANER56733.2023.00051, URL
https://doi.org/10.1109/SANER56733.2023.00051

Yang AZ, Hassan S, Zou Y, Hassan AE (2021) An empirical study on release
notes patterns of popular apps in the google play store. Empirical Software
Engineering pp 1–41

Yang AZH, Hassan S, Zou Y, Hassan AE (2022) An empirical study on re-
lease notes patterns of popular apps in the google play store. Empir Softw
Eng 27(2):55, DOI 10.1007/s10664-021-10086-2, URL https://doi.org/

10.1007/s10664-021-10086-2

Yu L (2009) Mining change logs and release notes to understand software
maintenance and evolution. CLEI Electron Journal 12(2):1–10

Yu S, Xu L, Zhang Y, Wu J, Liao Z, Li Y (2018) Nbsl: A supervised classifica-
tion model of pull request in github. In: 2018 IEEE International Conference
on Communications (ICC), pp 1–6

Zhai J, Shi Y, Pan M, Zhou G, Liu Y, Fang C, Ma S, Tan L, Zhang X (2020)
C2s: translating natural language comments to formal program specifica-
tions. In: Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering, pp 25–37

Zhang T, Gao C, Ma L, Lyu M, Kim M (2019a) An empirical study of common
challenges in developing deep learning applications. In: 2019 IEEE 30th In-
ternational Symposium on Software Reliability Engineering (ISSRE), IEEE,
pp 104–115, DOI 10.1109/ISSRE.2019.00020

Zhang Y, Zhou M, Mockus A, Jin Z (2019b) Companies’ participation in
oss development–an empirical study of openstack. IEEE Transactions on
Software Engineering 47(10):2242–2259

https://doi.org/10.1109/SANER56733.2023.00051
https://doi.org/10.1007/s10664-021-10086-2
https://doi.org/10.1007/s10664-021-10086-2

	Introduction
	Background and Related Work
	RQ1: What are the RN-related issues proposed on GitHub?
	RQ2: What strategies do developers adopt to resolve the RN-related issues
	Discussion
	Conclusion
	Data Availability

