
Understanding and Remediating Open-Source
License Incompatibilities in the PyPI Ecosystem

Weiwei Xu∗, Hao He∗, Kai Gao, Minghui Zhou†
School of Computer Science and School of Software & Microelectronics, Peking University, Beijing, China

Key Laboratory of High Confidence Software Technologies, Ministry of Education, China
xuww@stu.pku.edu.cn, {heh, gaokai19, zhmh}@pku.edu.cn

Abstract—The reuse and distribution of open-source software
must be in compliance with its accompanying open-source license.
In modern packaging ecosystems, maintaining such compliance is
challenging because a package may have a complex multi-layered
dependency graph with many packages, any of which may have an
incompatible license. Although prior research finds that license
incompatibilities are prevalent, empirical evidence is still scarce in
some modern packaging ecosystems (e.g., PyPI). It also remains
unclear how developers remediate the license incompatibilities
in the dependency graphs of their packages (including direct and
transitive dependencies), let alone any automated approaches.
To bridge this gap, we conduct a large-scale empirical study

of license incompatibilities and their remediation practices in the
PyPI ecosystem. We find that 7.27% of the PyPI package releases
have license incompatibilities and 61.3% of them are caused by
transitive dependencies, causing challenges in their remediation;
for remediation, developers can apply one of the five strategies:
migration, removal, pinning versions, changing their own licenses,
and negotiation. Inspired by our findings, we propose SILENCE,
an SMT-solver-based approach to recommend license incompat-
ibility remediations with minimal costs in package dependency
graph. Our evaluation shows that the remediations proposed by
SILENCE can match 19 historical real-world cases (except for
migrations not covered by an existing knowledge base) and have
been accepted by five popular PyPI packages whose developers
were previously unaware of their license incompatibilities.

I. INTRODUCTION

Open-source licenses dictate the terms and conditions re-

garding how a piece of open-source software (OSS) can be

reused, modified, and redistributed [1]. As of April 2023, the

Open Source Initiative (OSI) has approved 117 open-source

licenses [2], ranging from highly restrictive ones (e.g., GPL

3.0 [3]) to highly permissive ones (e.g., MIT [4]). When

developers incorporate OSS into their projects, it is critical

to comply with all the terms and conditions declared in the

license of the OSS. Failure to do so can result in ethical, legal,

and monetary consequences [5], [6].

As OSS thrives, modern software development is increas-

ingly dependent on the reuse of OSS packages from major

packaging ecosystems (e.g., PyPI [7], Maven [8], npm [9]). On

the other hand, the legal risks of reusing OSS packages from

packaging ecosystems are high because packages form com-

plex dependency networks in which one package can directly

or transitively depend on hundreds of other packages [10]. Any

of the dependent packages may have a very restrictive license,

∗Both authors contributed equally to this paper.†Minghui Zhou is the corresponding author.

requires_dist:
ndjson
voxel51-eta (<0.9,>=0.8.1)
opencv-python-headless
...

any

any

<5, >=4.1

<0.9, >=0.8.1

any

any

any

any

Fig. 1. License incompatibilities in fiftyone 0.18.0 when it is released.

which can easily introduce license violations for any package

or downstream project depending on them.

In this paper, we consider the license incompatibility issue
occurring when an OSS package release1 depends on another

release whose license is incompatible with its own license. Li-

cense incompatibilities can arise from both direct and transitive

dependencies in a release’s dependency graph [12], [13]. By

dependency graph (sometimes also referred to as dependency

tree [14]), we mean a directed graph with a release as the

root node, releases that the root node directly or transitively

depends on as other nodes, and direct dependency relationships

between nodes as edges. A dependency graph represents all

upstream dependencies of a release and is resolved using a

dependency resolver such as pip [15] or Poetry [16].

For example, Figure 1 illustrates a part of the dependency

graph for fiftyone 0.18.0 when it is released on November

10th, 2022. We can observe that fiftyone 0.18.0 depends

on two GPL-3.0-licensed releases, i.e., ndjson 0.3.1 and

patool 1.12. However, fiftyone 0.18.0 itself is licensed

under Apache 2.0, which violates the requirement of GPL

3.0 that any of its dynamically linked derivative work should

be also licensed under a GPL license (as interpreted by the

Free Software Foundation [17]). Such license incompatibilities

can happen for many reasons, including but not limited to: 1)

developers may pay insufficient attention to OSS licensing or

have insufficient knowledge about OSS licensing [18], [19];

2) dependency graphs dynamically change over time [14] and

packages may change licenses in new releases [20], [21]; 3)

developers may only manage direct dependencies, overlooking

1In this paper, we align with the terminology of PyPA [11] and use the term
release to refer to a specific version of a package. For example, fiftyone
0.18.0 is one of the releases of fiftyone with version number 0.18.0.

178

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00175

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

17
5

Authorized licensed use limited to: Peking University. Downloaded on December 22,2023 at 13:19:13 UTC from IEEE Xplore. Restrictions apply.

or lacking enough control over transitive dependencies [22].

Past research has revealed the prevalence of license incom-

patibilities in npm and RubyGem [12], [13] and techniques are

proposed to detect incompatibilities [1], [23]–[28]. An earlier

study [25] provided guidance on reusing OSS components

to avoid license incompatibilities. However, to the best of

our knowledge, other packaging ecosystems are understudied

and little is known about how developers remediate license

incompatibilities in the dependency graph. Such knowledge is
important for the design of tools to support this process.

To bridge the aforementioned gap, we begin with a large-

scale empirical study in the PyPI ecosystem, one of the most

thriving packaging ecosystems in recent years. To enable this

study, we build an up-to-date dataset containing licensing and

dependency information of 3,622,711 releases from 438,967

PyPI packages. Our study answers these research questions:

• RQ1: What is the distribution of licenses and how does
licensing evolve in the PyPI ecosystem?

• RQ2: What is the distribution of license incompatibilities
in the dependency graphs of PyPI releases?

• RQ3: How do PyPI package developers respond to and
remediate license incompatibilities in practice?

Inspired by our findings, we propose SILENCE, an SMT-

solver-based incompatibility remediator for licenses in the

dependency graph. Given a release and its dependency graph

with one or more license incompatibilities, SILENCE 1) finds

alternative licenses that are compatible with the dependency

graph, and 2) searches for alternative graphs with no license in-

compatibilities and minimal changes compared to the original

graph (i.e., indicating minimal remediation costs). The results

are aggregated as a report of recommended remediations (i.e.,

migrations, removals, version pinnings, or license changes) for

developers to consider and choose. Our evaluation shows that

the results of SILENCE can match the remediations proposed

by developers in 19 historical real-world cases except when the

migration is not covered by an existing knowledge base [29].

We further identify and report license incompatibilities that

are still present in nine popular PyPI packages, five of which

have been confirmed and remediated by package developers

following one of the SILENCE’s suggestions.

In summary, the contributions of this paper are as follows:

• We build an up-to-date dependency and licensing dataset

for the PyPI ecosystem, laying the foundation for license

incompatibility analysis and remediation.

• We conduct the first large-scale empirical study to con-

firm the prevalence of license incompatibilities in PyPI

and reveal developers’ remediation practices.

• We design and evaluate a novel SMT-solver-based ap-

proach, SILENCE, for recommending actions to remediate

license incompatibilities in Python dependency graphs.

II. RELATED WORK

OSS licenses and licensing are studied in both software en-

gineering and information system research. We review related

work in three main realms: license identification, license usage

and evolution, and license incompatibility detection.

License Identification. The first step of any license-oriented
research is the identification of licenses and/or license terms in

OSS, which can be difficult in the absence of clean and curated

data sources. Therefore, researchers have proposed various

approaches to identify licenses, or some specific license terms,

from source code, binary files, or text [30]–[34]. There are

also open-source tools for this purpose, such as ScanCode [35]

and Licensee [36]. To facilitate the automated processing of

OSS licensing information, the Linux Foundation proposed the

Software Package Data Exchange (SPDX) standard in which

a list of standard license identifiers is defined [37].

License Usage and Evolution. Di Penta et al. [38] studied
the licensing evolution of six OSS systems, concluding that

they underwent frequent and substantial changes with variable

patterns. Comino and Manenti [39] proposed a model to ex-

plain the commercial benefits of dual-licensed OSS. Vendome

et al. [20], [21] conducted a large-scale mixed-method study

on 16,221 Java projects; they discovered a clear trend toward

the use of less restrictive licenses mainly for facilitating reuse.

In the context of JavaScript projects, studies analyzed the use

of non-approved OSI licenses [40] and multi-licensing [41].

License Incompatibility Detection. Perhaps the most im-
portant topic in OSS licensing is to check if some software is

legally compliant with all the OSS it depends on, as violations

can lead to legal, monetary, and ethical consequences [5], [6].

Licensing issues can manifest in many ways (see a compre-

hensive taxonomy in Vendome et al. [42]), but most research

effort is focused on checking license incompatibilities between

common, known OSS licenses. German et al. [25] developed a

model for license incompatibility and performed case studies

on how different software systems address incompatibilities.

Further studies proposed approaches to understand and check

license incompatibilities in the Fedora Linux distribution [43],

Android apps [26], and Java applications [27], [28]. Kapitsaki

et al. [44] proposed a general process based on SPDX.

Wolter et al. [45] studied license inconsistencies within GitHub

repositories, finding that many of the most popular ones do not

fully declare all the licenses found in their source code.

In the context of packaging ecosystems, Qiu et al. [12] find

that 0.644% of npm packages have license incompatibilities

and developers face difficulties in managing them. Considering

more licenses and the entire ecosystem, Makari et al. [13] find

that 7.3% of npm packages and 13.9% of RubyGem packages

contain license incompatibilities. Pfeiffer [46] studied incom-

patibilities caused by the AGPL license in seven ecosystems,

concluding that incompatibilities are present in all ecosystems,

among which PyPI and Maven packages are most risky.

Other studies explored the possibility of using fine-grained

analysis on license terms to find incompatibilities in arbitrary

licenses, using argumentation system [47] or learning-based

approaches [1]. For example, Xu et al. [1] proposed LIDE-

TECTOR, an NLP-based method to interpret any OSS license

and detect incompatibilities. Their analysis of 1,846 GitHub

projects revealed that 72.91% of them have license incompat-

ibilities, but they did not consider license incompatibilities in
the dependency graph. Researchers also studied the develop-

179

Authorized licensed use limited to: Peking University. Downloaded on December 22,2023 at 13:19:13 UTC from IEEE Xplore. Restrictions apply.

ers’ understanding of OSS licensing [18], [19], [48], proposed

license recommendation tools [49]–[51], and investigated the

impact of OSS licensing on different topics [6], [52]–[54].

To the best of our knowledge, none of the previous studies

have investigated how packaging ecosystem developers reme-

diate license incompatibilities in the dependency graph of a

specific package. Such understanding is critical for the design

of automated tools to address developers’ demand in remediat-

ing such incompatibilities (as shown in Qiu et al. [12]). Among

different packaging ecosystems, PyPI is understudied in OSS

licensing (the only study on PyPI [46] investigated only the

AGPL license) but highly popular (currently the 3rd largest

packaging ecosystem with rapid growth [55]). This motivates

us to instantiate our study in the PyPI ecosystem.

III. THE PYPI DEPENDENCY & LICENSING DATASET

To provide a foundation for license incompatibility analysis

and remediation in the dependency graph, we build a dataset

with the dependency and licensing information of the entire

PyPI ecosystem as of November 2022. In this Section, we will

describe the dataset and its construction process in detail.

A. PyPI Dependency Data

1) Data Collection: We begin with a complete PyPI dis-

tribution metadata dump obtained from the official dataset

hosted on Google BigQuery [56] in November 2022. The

dump contains 438,967 packages with 3,622,711 different re-

leases, and each release may have multiple distributions (e.g.,

intended for different operating systems or Python versions).

For each distribution, the metadata provides a requires dist
field specifying other packages required by this distribution,

optionally with version constraints and extra markers (as

defined by PEP 508 [57], see an example in Figure 1). We

observe that for the same release, the requires dist fields

of different distributions are almost always consistent.2 For

convenience, we arbitrarily select the requires dist from

one distribution as the dependencies of a particular release.

2) Dependency Resolution: The requires dist field only
encodes a specification of direct dependencies which is a list

of requirement strings [59]. Using a dependency solver (e.g.,

pip [15] or Poetry [16]), the specification can be solved into a
concrete dependency graph, with all dependencies (direct and
transitive) and their versions. Unfortunately, the relationship

between dependency specifications and dependency graphs is

loose: the same specification can result in different dependency

graphs at different times due to new package releases, flexible

version constraints, and changes in the dependency solver [14],

[60], [61]. For the purpose of longitudinal analysis, we need to

restore the dependency graph of a specific release at any past

time of interest. Thus, we implement a custom dependency

solver following the algorithm described in Wang et al. [62],

which imitates the breadth-first search behavior of pip but

ignores dependency conflicts and backtracking [61].

2Specifically, among the top 5000 most downloaded PyPI packages [58]
(which we will also use for the empirical study, Section IV-B), only 0.28% of
their releases have inconsistent requires dists in different distributions.

To evaluate the extent to which this dependency solver

can imitate pip, we collect packages with ≥ 1 non-optional

direct dependency from the top 5000 most downloaded PyPI

packages [58], resulting in 825 packages. For each package p,
we use our solver to solve a dependency graph Gours at the

current time for its latest release. Then, we run pip install p
in a clean virtual environment to get a ground truth dependency

graph Gpip solved by pip and compute precision & recall as:

Precision(p) = |Gours ∩Gpip| / |Gours|
Recall(p) = |Gours ∩Gpip| / |Gpip|

Among the 825 packages, we obtain an average precision of

0.9715 and an average recall of 0.9390, indicating a very high

degree of match between the results of the two solvers. The

mismatches can happen for various reasons, such as the four-

month lag between our dump and the experiment time, pip’s
backtracking behaviors [61], etc. Still, our custom dependency

solver is orders of magnitude faster than pip because it directly
queries our metadata dump (instead of interacting with PyPI

APIs and downloading a lot of release files). It also supports

resolving dependency graphs at any historical time of interest,

which is not possible using pip. Using this solver, we compute
a historical dependency graph for each release at its upload
time, which we will use for our empirical study.3

B. PyPI Licensing Data

1) Data Collection: The licensing information of a release

can be found in three possible data sources:

• The license field in its distribution metadata. It has

two notable limitations: 1) its value is left to the discre-

tion of individual developers without a uniform format

(e.g., an Apache 2.0 licensed package can have values

like "Apache v2", "Apache Version 2", "Apache 2",
or even the complete license text; 2) 31.9% of the releases

do not have this field in its distribution metadata.

• The classifier field in the metadata may contain pre-

defined license identifiers that can be easily mapped into

SPDX identifiers [37]. This data source is validated by

PyPI and can serve as ground truth, but even fewer

(13.8%) releases have license tag(s) in classifier.
• The wheel distribution files, which can include LICENSE
and README files with licensing information. However,

downloading all distribution files from PyPI would re-

quire excessive computation and network resources.

To address the limitations of these data sources, we design

a multi-step cross-validation approach to get cleaned licensing

information (as SPDX license identifiers) for as many releases

as possible in our dataset. For this purpose, we build a mapping

between license fields and SPDX license identifiers using

all package versions with available classifier tags. Using this

mapping, we build another mapping between SPDX license

3Note that this approach ignores development dependencies and optional
dependencies, computing only the dependency graph that is always distributed
with the package (e.g., when a pip install is executed). This means that
any license incompatibilities, especially those related to redistribution, would
be highly problematic if present in this dependency graph.

180

Authorized licensed use limited to: Peking University. Downloaded on December 22,2023 at 13:19:13 UTC from IEEE Xplore. Restrictions apply.

identifiers and common keywords in the license fields, in-

cluding name keywords, version keywords, “must-not-have”

keywords, and “must-have” keywords. The two mappings are

intended to “cross-validate” license fields using the ground

truth available from the license classifier tags.

For each release, if it already contains a license identifier

in the classifier field, we just convert it to the SPDX

identifier. Then, for each of the remaining releases with a

license field, we retrieve the most frequent SPDX license

identifier corresponding to the value of this field using the

first mapping. If the above retrieval does not work, we use

the second keyword mapping (which is looser) to map the

license field into one of the SPDX license identifiers. If the

previous steps fail, or if the release does not have a license
field, we download its distribution file and scan the LICENSE
and README files using ScanCode [35], a widely used license

detection tool. Finally, if all attempts fail to resolve into an

SPDX identifier, we mark the license as Unrecognizable.
By applying the above approach to the 3,622,711 releases in

our dataset, we get licensing information from classifier tags,

the license field, and distribution files for 500,457 (13.8%),

2,465,863 (68.1%), 135,590 (3.7%) releases respectively, leav-

ing 520,801 (14.4%) releases with Unrecognizable licensing.

To evaluate the effectiveness of this license identification ap-

proach, we randomly sample 385 releases from the population

of 3,622,711 releases (95% confidence level, 5% confidence

interval [63]). Then, we manually check whether the licenses

identified by our approach can match different sources of

information, including 1) GitHub repositories), 2) LICENSE
files in the distribution, and 3) the license field. Among

the 385 samples, our approach returns Unrecognizable for

51 of them (13.2%). Among the remaining 334 samples, 323

match other sources of information, resulting in an accuracy

of 96.7% (323 / 334). For the 11 misidentified samples, six

are due to users providing incorrect licensing information in

the metadata, four are because users omit the versions of their

license in the license field, and one is due to dual licensing.

Among the 51 samples with Unrecognizable licensing, ten

have been removed from PyPI at the time of inspections, 39 do

not have licensing information in all sources, and five are early

releases of a package (developers may only consider licensing

until official release [21]). Two samples have custom licenses

that are not covered by existing license identifiers. Finally,

for one sample, there is no sufficient information in both the

license field and the LICENSE file to determine the specific

license for the release. To summarize, the evaluation results

demonstrate that our approach is able to identify licensing

information in the majority of cases except when the data

sources are noisy or dual licensing is used, but both cases are

rare. We believe that the resulting licensing information can

provide a sound foundation for subsequent analyses.

2) Finding License Incompatibilities: Inspired by previous

works [44], [50], we consider the one-way combinative incom-
patibility between licenses in this paper, defined as:

Definition 1: (License Incompatibility) License A is one-

way incompatible with license B if and only if it is infeasible

to distribute derivative works of A-licensed software under B.
For example, GPL 3.0 is one-way incompatible with Apache

2.0 because the derivative works of GPL-3.0-licensed software

cannot be distributed under Apache 2.0 (but the reverse is

feasible, and thus one-way incompatible). On the other hand,

Apache 2.0 and GPL 2.0 are incompatible in both ways

because they have conflicting terms about patents [64].

This definition fits well in the context of packaging ecosys-

tems because a package can be considered the derivative work

of its dependencies (according to the Free Software Foundation

(FSF) but there are some controversies [65]–[67]).

We compute all one-way incompatible license pairs using

the license compatibility matrix proposed by Xu et al. [50],

in which they analyzed the compatibility between licenses

along 19 dimensions of terms such as copyleft, trademark

grants, and patent grants. We choose this matrix for three

reasons. First, it is the largest available license compatibility

data to the best of our knowledge, compromising compatibility

relationships between 63 licenses. Second, to ensure popularity

and representativeness, all the licenses are: 1) certified by FSF

or OSI [2]; 2) not obsolete (e.g., Apache-1.1); 3) not restricted

to specific domains, software, or authors (e.g., IPA is a font

license). Third, the 63 licenses can cover 99.4% of releases of

which the license information has been obtained in our dataset.

Using these incompatible license pairs, we identify incom-

patible dependencies for each release based on the dependency

graphs computed in Section III-A2.

C. Dataset Overview

To summarize, our dataset contains 438,967 PyPI packages

and 3,622,711 releases from the entire PyPI ecosystem as

of November 2022. For each release, the dataset offers 1)

an SPDX license identifier, 2) a list of direct dependencies

and their version constraints, 3) a dependency graph at its

upload time, and 4) a list of incompatible dependencies. The

dataset is stored as a MongoDB collection occupying 3.45GB

of storage space with built-in compression. As most of the

dataset construction process is automated (except building the

keyword mapping in Section III-B1), the dataset can be easily

updated using the latest PyPI BigQuery dataset. To the best

of our knowledge, this is the first dataset of dependency and

licensing information in the entire PyPI ecosystem. We will

discuss the limitations of this dataset in Section VI-B.

IV. EMPIRICAL STUDY

A. Research Questions

The goal of this empirical study is to provide evidence

about license incompatibilities and their remediation practices

in the PyPI ecosystem. Such evidence can help the design of

automated tools supporting remediation in dependency graphs.

Toward this goal, we ask the following research questions:

• RQ1: What is the distribution of licenses and how does
licensing evolve in the PyPI ecosystem?
Rationale. This RQ aims to provide an overview of li-

censes and licensing evolution in the PyPI ecosystem. We

are especially interested in the prevalence and evolution

181

Authorized licensed use limited to: Peking University. Downloaded on December 22,2023 at 13:19:13 UTC from IEEE Xplore. Restrictions apply.

of restrictive licenses as they are most likely to introduce

license incompatibilities. Although the same question has

been answered in other contexts [13], [20], it has not been

answered in PyPI yet, motivating us to ask this RQ.
• RQ2: What is the distribution of license incompatibilities
in the dependency graphs of PyPI releases?
Rationale. Due to the prevalence of license incompati-

bilities in npm and RubyGem [12], [13], this RQ intends

to confirm, in PyPI, the prevalence of license incompat-

ibilities. We are also interested in their positions in the

dependency graph (direct or transitive), and their degree

of connectivity with other nodes in the dependency graph,

which may indicate possible difficulties in remediation.

• RQ3: How do PyPI package developers respond to and
remediate license incompatibilities in practice?
Rationale. The goal of this RQ is to uncover the chal-

lenges that developers face when attempting to remediate

license incompatibilities and to explore common remedia-

tion strategies discussed by developers. Such understand-

ing is vital for the design of supportive tools, especially

in the design of potential solution spaces.

B. Study Subjects

For RQ1& RQ2, we consider two groups of PyPI packages:
• TOP: The top 5000 most downloaded PyPI packages [58].

This group represents widely-used Python packages for

which license incompatibilities can have a huge impact;

• ALL: All the 438,967 PyPI packages in our dataset.

We expect a comparison to reveal the differences between

popular packages and the global population in terms of their

license preferences and licensing practices. To avoid bias from

packages with a large number of releases, we only select the

latest release of each package in each year for all subsequent

analyses (except for within-package evolution in RQ1).
For RQ3, we only focus on the TOP group as they are more

likely to have mature development practices and transparent

development activities (e.g., extensively using issue trackers),

without which the answering of RQ3 would be impossible.

C. Methods and Results

1) RQ1: License Distribution & Evolution: Following prior
work [44], [45], [49], we classify licenses into four different

categories ordered by their level of permissiveness:

• Permissive: Software that changes or uses existing soft-

ware can be licensed under a different license (e.g., MIT);

• Weak Copyleft: Software that changes existing software
must be licensed under the same license, but software

that uses existing software (e.g., by calling APIs) does

not have to (e.g., LGPL 3.0).

• Strong Copyleft: Software that changes or uses existing
software must be licensed under the same license unless

an exception is specified (e.g., GPL 3.0 and AGPL 3.0);

• Unknown: The license is Unrecognized (Section III-B).

Overall, widely-used PyPI packages tend to be permissive:

in the TOP group, 85.82% have a permissive license, 4.07%

(a) TOP (b) ALL

Fig. 2. The yearly distribution of licensing categories in the two groups.

have a weak copyleft one, and 3.72% have a strong copy-

left one, leaving 6.39% as unknown. However, the global

population is more restrictive and less recognizable: in the

ALL group, the ratio of packages with a permissive, weak

left, strong copyleft license is 62.14%, 2.80%, and 14.67%

respectively, leaving a large proportion of 20.39% as unknown.

We plot the yearly distribution of licensing categories in Fig-

ure 2(a) and 2(b). We can observe that permissive licenses are

not only the most common but also increasingly popular over

the years in both groups. However, as of 2022, packages with

strong copyleft licenses in ALL still constitute a significant

portion (12.63%) and 4.0x higher than that of TOP (3.17%).

What’s more, the proportion of the unknown category in TOP

is lower than that in ALL and is decreasing over the years.

This indicates that widely-used packages have devoted efforts

to providing accurate and complete licensing information but

less popular ones have not done so.

Similar to Vendome et al. [20], we investigate how licensing

evolves within packages. We confirm that licensing changes

are not uncommon in PyPI packages (just as other OSS [20],

[38]): in the TOP group, 425 (9.10%) packages have under-

gone one licensing change, and 87 (1.86%) packages have

undergone two or more changes. This is significantly higher

than that in ALL (3.04%). Most licensing changes are between

licenses in the same level of permissiveness (63.74% in TOP

and 56.20% in ALL). In TOP, there is a tendency toward using

more permissive licenses (27.66%) but changing toward less

permissive ones is less frequent (8.60%). In ALL, licensing

changes in both directions are common (26.15% toward more

permissive and 17.65% toward less permissive).

Answers for RQ1: In the PyPI ecosystem, 85.82% of the TOP
packages have a permissive license, but strong copyleft licenses
are also present (3.72% among TOP and 14.67% among ALL).
10.96% of the TOP packages and 3.04% of ALL have undergone
at least one licensing change. Although many licensing changes
are within the same level of permissiveness, a non-negligible
portion is toward more restrictive ones (17.65% among ALL).

Implications: The risk of license incompatibilities could be high
in PyPI due to the presence of strong copyleft licenses. We also
confirm that licensing changes are common in PyPI packages,
among which changing toward more restrictive licenses could
be especially problematic for the downstream packages. To take
licensing changes into consideration, a precise and versioned de-
pendency graph is necessary for license incompatibility analysis.

182

Authorized licensed use limited to: Peking University. Downloaded on December 22,2023 at 13:19:13 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE LICENSE COMPATIBILITY STATUS OF PYPI RELEASES

TOP (10,282 releases) ALL (271,811 releases)
Compatibility Label Count Percentage Count Percentage

Compatible 5,731 55.64% 114,135 41.99%
Incompatible 202 1.96% 19,772 7.27%
Unknown 4,349 42.30% 137,904 50.74%

TABLE II
THE CUMULATIVE DISTRIBUTION OF DEPENDENCY GRAPH METRICS FOR

ALL INCOMPATIBLE DEPENDENCIES

= 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5

Depth TOP - 74.0% 96.2% 100% - -
ALL - 38.7% 71.8% 89.1% 95.2% 97.6%

In-degree TOP - 95.9% 100% - - -
ALL - 75.4% 87.7% 91.9% 94.2% 95.8%

Out-degree TOP 60.8% 68.7% 81.9% 90.2% 97.4% 97.7%
ALL 45.6% 57.9% 63.7% 68.6% 74.1% 79.0%

2) RQ2: License Incompatibility Distribution: In Sec-

tion III-C, we have resolved a dependency graph for each re-

lease at its upload time and checked whether the licenses of all

its dependencies in the graph are compatible with the license

of this release. If any incompatibility is detected, we label the

release as Incompatible; if all dependencies have compatible
licenses, we label the release as Compatible; otherwise,

(i.e., there is at least one dependency with Unrecognizable
license), we label the release as Unknown.
As we study license incompatibilities introduced by depen-

dencies, we exclude releases without dependencies, leaving

10,282 releases in the TOP group (3,068 packages) and

271,811 releases in the ALL group (176,955 packages). We

summarize their license compatibility status in Table I. We

can observe that license incompatibilities are less common

among TOP, with only 202 (1.96%) of the releases being

Incompatible (92 packages). However, this proportion is

significantly higher among ALL, with 19,772 (7.27%) being

Incompatible. This indicates that license incompatibilities are
not uncommon in PyPI ecosystem and much more common

(3.7x) in less popular packages than widely-used packages.

In the dependency graph of a release, license incompatibility

can be caused by both direct dependencies and transitive

dependencies. The latter is more difficult to remediate because:

1) transitive dependencies are required by other dependencies

and developers have limited control over them; 2) their reme-

diation can trigger a ripple effect due to edges in the graph.

Therefore, to gain a better understanding of this problem,

we are interested in the location of license incompatibilities

in dependency graphs. For each license incompatibility, we

compute the following metrics in the dependency graph:

• Depth: The shortest distance between the incompatible

dependency and the root node. Direct dependencies have

a depth of one. A high depth means a long dependency

chain needs to be addressed during remediation.

• In-degree: The number of packages in the dependency

graph directly depending on the incompatible depen-

dency, which needs to meet the version constraints for all

of them. In-degree characterizes the number of constraints

that need to be considered during remediation.

• Out-degree: The number of packages that the incompat-
ible dependency directly depends on. Out-degree char-

acterizes the number of dependencies that could be im-

pacted when remediating the compatibility issue.

Table II shows the cumulative distribution of these metrics

for incompatible dependencies in the dependency graph. In

total, there are 265 and 46,237 incompatible dependencies in

the TOP and ALL groups, respectively (a release may have

multiple incompatible dependencies). We find that incompati-

ble dependencies are more likely to be in a complex position

among ALL compared with TOP. Among TOP, 26.0% of them

come from transitive dependencies (i.e., depth ≥2) while the
percentage rises to 61.3% among ALL. 5,032 (10.9%) of them

in ALL have a depth of at least four in the dependency graph,

and 5,681 (12.3%) of them have an in-degree greater than

or equal to three. However, among TOP, all cases of license

incompatibilities caused by transitive dependencies are limited

to the second or third layer of the dependency graph, with an

in-degree of either one or two. Moreover, among ALL, the

mean of the out-degree for incompatible dependencies in the

dependency graph is 3.93, whereas in TOP, it is only 1.06.

In other words, license incompatibilities are sophisticated

for many releases in the PyPI ecosystem. They may be caused

by incompatible transitive dependencies, some of which are

deeply nested with many dependencies and dependents. This

means that the remediation of these incompatibilities requires

addressing many other interrelated dependencies, necessitating

a method that can identify feasible solutions from a global

perspective considering the entire dependency graph.

Answers for RQ2: In the entire PyPI ecosystem, a significant
proportion of releases (7.27%) have license incompatibilities.
Although most incompatible dependencies (74.0%) are direct
dependencies in dependency graphs of TOP packages, 61.3% of
them in that of ALL are transitive dependencies that may reside
in deep and sophisticated dependency graph positions.

Implications: License incompatibilities form a significant prob-
lem in the PyPI ecosystem. Remediating license incompatibilities
in transitive dependencies requires searching for a feasible solu-
tion from a global perspective in the entire dependency graph.

3) RQ3: License Incompatibility Remediation in Practice:
To answer RQ3, we analyze the GitHub issue trackers of

the 92 packages with license incompatibilities from TOP. For

each package, we manually find their GitHub repository and

search the issue tracker using three different keywords: 1)

license; 2) the name of incompatible license (e.g., GPL); 3)
the name of the incompatible package (e.g., unidecode). Then,
we manually identify relevant issues, pull requests (PRs), and

discussions from the search results, resulting in 25 issues and

eight PRs from 17 repositories. For each repository, we find

the developers’ discussions and categorize the remediations (or

proposed remediations) using an open-coding procedure [68].

To ensure reliability and avoid bias, two authors of this paper,

both with over five years of software development experience,

183

Authorized licensed use limited to: Peking University. Downloaded on December 22,2023 at 13:19:13 UTC from IEEE Xplore. Restrictions apply.

TABLE III
LICENSE INCOMPATIBILITIES AND THEIR REMEDIATIONS. � MARKS THE FINAL REMEDIATION TAKEN BY DEVELOPERS.

Package License Incompatible Dependency License Issue(s) & PR(s) Proposed Remediation(s)

Id
en
tifi
ed
in
R
Q
3

ansible-lint MIT ansible GPL 3.0 #1188, #1882 �Change Own License
apache-airflow Apache 2.0 mysql-connector-python GPL 3.0 #9898, #10667 Migration, �No Remediation
cvxpy Apache 2.0 ecos GPL 3.0 #313 Migration, �No Remediation
dvc Apache 2.0 grandalf GPL 2.0 #1115 �No Remediation
fbprophet 3-Clause BSD lunardate GPL 3.0 #1069, #1091 �Migration, Removal
fbprophet 3-Clause BSD pystan GPL 3.0 #1045, #1221 �Migration
fiftyone Apache 2.0 ndjson GPL 3.0 #2864, eta#590 �Migration
fiftyone Apache 2.0 patool GPL 3.0 #2864, eta#590 �Migration
halo MIT cursor GPL 3.0 #118, #147 Pin Version, Migration, �Removal
jiwer Apache 2.0 levenshtein GPL 3.0 #69, #71 �Migration
mitmproxy MIT html2text GPL 3.0 #2572, #2573 �Removal
netcdf4 MIT cftime GPL 3.0 #1000, #1073 �Negotiation, Pin Version
orbit-ml Apache 2.0 pystan GPL 3.0 #435 Migration
pulp 3-Clause BSD amply EPL 1.0 #394 �Negotiation, Removal
pytest-pylint MIT pylint GPL 2.0+ #178 No Remediation
textacy Apache 2.0 fuzzywuzzy GPL 2.0 #62, #63 �Removal
textacy Apache 2.0 unidecode GPL 2.0+ #203 Migration, �Removal
textacy Apache 2.0 python-levenshtein GPL 3.0 #203 Migration
wemake-python MIT flake8-isort GPL 2.0 #2481 Negotiation, �Migration
workalendar MIT lunardate GPL 3.0 #346, #536, #709 Change Own License, �Migration, Removal
yt-dlp Unlicense mutagen GPL 2.0+ #348, #2345 Change Own License, Removal

R
ep
or
te
d
by
SI
L
E
N
C
E amundsen Apache 2.0 unidecode GPL 2.0+ #2148, #2168 Chg. Own Lic., �Migration, Removal, Pin Ver.

cibuildwheel 2-Clause BSD bashlex GPL 3.0 #1484 Change Own License, Removal
glean-parser MPL 2.0 yamllint GPL 3.0 #1830049, #578 Change Own License, �Removal
metaflow Apache 2.0 pylint GPL 2.0+ #1377, #1378 Change Own License, Migration, �Removal
music-assistant Apache 2.0 unidecode GPL 2.0+ #1220 Change Own License, Migration, Removal
optbinning Apache 2.0 ecos GPL 3.0+ #242 Change Own License, Removal
pylint-gitlab MIT pylint GPL 2.0+ #15, #20 �Change Own License, Migration, Removal
sphinx-autoapi MIT unidecode GPL 2.0+ #382, 0a557fc Chg. Own Lic., �Migration, Removal, Pin Ver.
zha-quirks Apache 2.0 zigpy GPL 3.0 #3256 Change Own License, Removal

independently performed the above steps; they later discussed

and merged the results into a consensus.

The upper half of Table III summarizes the 21 license

incompatibilities we found and the remediations proposed or

taken by developers. We have two immediate observations:

a) License incompatibilities happen because OSS developers
lack knowledge or pay little attention to OSS licensing. For ex-
ample, a developer commented: I don’t get into licensing much
and hence MIT everything, thus don’t know the implications
of this. I will investigate this and get back. (halo#118).
b) License incompatibilities frequently cause confusion and

controversies, even among experienced OSS developers, after
they are raised in an issue. Many issues in Table III triggered

lengthy discussions about whether the incompatibility really

exists and whether it really matters for their projects (e.g.,

pulp#394). For example, a common argument is that having a
GPL-3.0-licensed dependency does not result in the package

becoming a “derivative work” of that dependency. However,

this contradicts the interpretation of FSF [66] and is disagreed

by many other developers. The situation is more controversial

and sophisticated in some cases, such as with the presence of

optional dependencies (e.g., apache-airflow#9898).
In 17 of the 21 cases, developers acknowledged the rele-

vance of license incompatibilities and the necessity of remedia-

tion. However, it can be non-trivial to find an appropriate reme-

diation method and developers often need to evaluate multiple

possibilities (as can be observed in Table III). Specifically,

they considered the following remediation methods:

a) Migration (13 Incompatibilities): The most common

remediation is to migrate the incompatible dependency to

an alternative package with similar functionalities. For ex-

ample, lunardate can be replaced with LunarCalendar and

unidecode can be replaced with text-unidecode. This obser-
vation echoes prior research showing that developers migrate

packages due to licensing issues [69], [70].

b) Removal (8 Incompatibilities): If the incompatible de-

pendency is not used extensively, developers choose to remove

the dependency and replace it with their own implementations

of the desired functionality. For example, the developers of

halo eventually decided, after lengthy discussions, to remove

cursor and re-implement based on a Stack Overflow snippet.

c) Change Own License (3 Incompatibilities): Some de-

velopers proposed changing their package’s own license to

comply with the licensing requirement of its dependency. This

remediation was finally taken by ansible-lint as it is closely
integrated with its GPL-licensed dependency, ansible.
d) Negotiation (3 Incompatibilities): Another feasible option

is to ask upstream developers (i.e., developers of the incom-

patible dependency) to change the licenses of their packages

toward more permissive ones. For example, cftime decided

to remove GPL-related code and relicense itself under MIT

after a request from netcdf4 developers (cftime#116).
e) Pin Version (2 Incompatibilities): In the case of cursor

and cftime, the two packages were initially released under a

permissive license but changed their license in a new release.

To remediate this, developers of halo and netcdf4 proposed

184

Authorized licensed use limited to: Peking University. Downloaded on December 22,2023 at 13:19:13 UTC from IEEE Xplore. Restrictions apply.

to pin their versions to the version before the license change.

In three cases, developers conclude that remediation is not

necessary because the incompatible dependency is optional

(apache-airflow, cvxpy) or the dependency provides a dual-
licensing option (dvc). In the case of pytest-pylint, devel-
opers questioned the necessity of remediation, but the issue is

still open and unresolved at the time of writing.

Answers for RQ3: PyPI package developers show unfamiliarity
and raise controversies with OSS licensing when they discover a
license incompatibility. They remediate license incompatibilities
by 1) migrating, removing, or pinning a version of the incom-
patible dependency; 2) changing their own licenses; or 3) asking
upstream developers to change the licensing of their package.

Implications: Automated approaches can be helpful in making
developers aware of license incompatibilities and recommending
remediations. The practices taken by developers can serve as the
solution space to be explored by automated approaches.

V. THE SILENCE APPROACH

Inspired by the results from the empirical study, we propose

SILENCE, an SMT-solver-based incompatibility remediator for

licenses in the dependency graph. In this section, we describe

the design, implementation, and evaluation of SILENCE.

A. Data and Notations

Recall in Section III-C that our dataset contains 438,967

packages and 3,622,711 releases from the entire PyPI ecosys-

tem. To simplify the presentation of SILENCE, we provide a

formal notation of this dataset. We denote the set of package

names as P , the set of version strings as V , and the releases

in our dataset (i.e., the entire PyPI ecosystem) as E ⊆ P × V
(|E| = 3, 622, 711). Each 〈p, v〉 ∈ E contains:

• An SPDX license identifier l(p, v).
• Direct dependencies and version constraints deps(p, v) ⊆
P × C (C ⊆ V∗ denotes the set of version constraints).

• A dependency graph G(p, v) ::= 〈N(p, v), D(p, v)〉, s.t.
〈p, v〉 ∈ N(p, v) ⊆ E , D(p, v) ∈ N(p, v) �→ N∗(p, v).

• A list of incompatible dependencies incomp(p, v) ⊆
N(p, v) in the dependency graph, such that 〈p′, v′〉 ∈
incomp(p, v) ⇒ 〈l(p′, v′), l(p, v)〉 ∈ I (here I denotes

the set of one-way incompatible license pairs).

We denote the set of 63 licenses in the compatibility matrix as

L. To support finding migrations, we use the Python package

migration dataset by Gu et al. [29] containing 640 migration

rules between Python packages, denoted as M ⊆ P ×P .
B. Problem Formulation

According to our RQ3, developers may take one of the

following approaches to remediate license incompatibilities:

migration, removal, pinning version, changing their own li-

cense, and negotiating with upstream packages. The results

inspire us with the idea of using an automated approach to

generate and recommend possible remediations to developers

when a license incompatibility is detected (the detection can

be easily automated using our PyPI dependency and licensing

dataset in Section III). Such an automated approach can be

implemented as a GitHub CI/CD Action or a bot deployed to

notify and help developers remediate licensing incompatibili-

ties. As developers frequently discuss several remediations in

their issues and choose one of them eventually, this automated

approach should be able to recommend multiple reasonable

remediations for developers to consider and choose.

For the possible remediations, negotiations fall out of scope

for an automation tool, and determining which license(s) can

be changed is trivial as it only requires an enumeration of all

alternative licenses while assessing their compatibility with

the package dependency graph. However, finding migration,

removal, and version-pinning solutions is more challenging be-

cause incompatible dependencies may reside in a sophisticated

dependency graph position and any change can have a ripple

effect over the entire graph. On the other hand, developers

generally want to minimize changes to their dependency graph

because larger changes would often result in more remediation

effort. What’s more, finding viable migration targets itself is

challenging and has been explored in prior research [69], [71].

Considering the above rationales, we define the license

incompatibility remediation problem as follows:

1) Input: a release 〈p, v〉, its dependency graph G(p, v), and
the PyPI dataset (Section V-A);

2) Output: N alternative dependency graphs G′
1, ...,G′

N , all of

which have no license incompatibility and minimal changes

to G(p, v), and M alternative licenses l1, ..., lM with which

〈p, v〉 would have no license incompatibility in G(p, v).
We observe that this definition is similar to the dependency

resolution problem studied in prior work [72]–[74] with some

important differences. The alternative dependency graphs can

ignore dependencies (for removals), violate version constraints

(for pinning versions), and add new direct dependencies (for

migrations). Nonetheless, any deviations from the original

graph need to be minimized. Just like the dependency res-

olution problem, such alternative dependency graphs can be

found using a Max-SMT solver with a carefully designed

objective function. The exact remediations can be generated

by comparing the alternative graph and the original graph.

C. Approach Overview

Algorithm 1: The SILENCE Approach

Input: 〈p, v〉, G(p, v), and the PyPI dataset (Section V-A)
Output: G = {G′

1, ...,G′
N},L = {l1, ..., lM}

1 G← ∅, L← ∅
2 foreach l ∈ L do # find compatible licenses
3 if 〈l(p′, v′), l〉 /∈ I for all 〈p′, v′〉 ∈ N(p, v) \ 〈p, v〉 then
4 L← L ∪ {l}
5 Keep only top-M licenses in L ordered by their popularity
6 vars ← {p, plus all packages reachable from deps(p, v)}
7 clauses ← build constraints(p, v, vars)
8 while G′ ← find solution(vars, clauses, objective) do
9 if |G| ≥ N or G′ = unsat then break
10 G← G ∪ {G′}
11 Add new constraints to exclude solutions similar to G′

12 return G,L

Algorithm 1 summarizes the SILENCE approach. In line 2-

5, it finds M compatible licenses. In line 6-10, it finds N

185

Authorized licensed use limited to: Peking University. Downloaded on December 22,2023 at 13:19:13 UTC from IEEE Xplore. Restrictions apply.

alternative dependency graphs without license incompatibili-

ties. The key idea is to find all packages that may be present in

the alternative graph (line 6), build version constraint clauses

for each package (line 7), and find top-N solutions under the

objective function using a Max-SMT solver (line 8-11). We

will describe the underlying details in Section V-D.

D. SMT-Solver-Based License Incompatibility Remediation

To create a constraint SMT problem over a finite domain,

the first step is to initialize a set of finite domain variables

for all packages that may be present in the alternative graphs

(i.e., vars in line 6). To find these packages, we utilize a

breadth-first search (BFS) beginning from the root package p
and all possible migration targets pm that may replace one

of the dependencies of p (i.e., ∃〈pd, C〉 ∈ deps(p, v), s.t.
〈pd, pm〉 ∈ M). For each package p′ in the BFS queue, we

encode all its versions v1, ..., vk in a finite integer domain,

ordered by semantic versioning [75], from −k to −1 (i.e.,

oldest to latest). We use the special value p′ = 0 to indicate p′

is not included in the graph. All packages that p′ may depend
on (i.e., packages in

⋃
i=1,...,k deps(p

′, vi)) will be added to

the BFS queue. The search stops once saturation is reached

(i.e., no more new packages could be added to vars).
With a set of finite domain variables vars, the next step is to

encode their dependency relationships and version constraints

as clauses (line 7). For each p′ ∈ vars, excluding the root

package p, we encode a logical implication as follows:

(p′ = v′) =⇒
∧

〈pd,C〉∈deps(p′,v′)

(∨
vd∈C

(pd = vd)

)

Here we use p = v as a convenience notation meaning that

the corresponding finite domain variable of p in vars takes

the concrete integer value corresponding to v.
For root package p, we need to encode possible remediations

(i.e., migrations, removals, and version pinning) into its clause,

all of which can result in violations of dep(p, v). To consider

this, we add all possible migration targets without version

constraints (i.e., {〈pm,V〉}) to deps(p, v), allow each pd in

deps(p, v) to be removed (i.e., pd = 0), and allow the version

constraints to be violated, forming the following clause:

∧
〈pd,C〉∈deps(p,v)∪{〈pm,V〉}

⎛
⎝(pd = 0) ∨

∨
〈pd,vd〉∈E

(pd = vd)

⎞
⎠

Of course, p must be of its original version (i.e., p = v).
Finally, to remediate license incompatibilities, we add the

following logical implications for all packages in vars:

∧
p′∈vars

(〈l(p′, v′), l(p, v)〉 ∈ I =⇒ p′ = v′)

All the above clauses form the constraints of this problem.

For the packages in vars, any set of concrete integer values

satisfying all the constraints forms a valid solution. However,

the constraints here are loose with many possible solutions.

To find solutions (i.e., an alternative graph G′) with minimal

differences compared with the original graph G(p, v), we

define the optimization objective (in line 8) as follows:

min
G′

∑
〈pold,pnew〉∈diff(G,G′)

⎧⎨
⎩

cmigration, 〈pold, pnew〉 ∈ M
cremoval, pnew = 0
|pnew − pold|, otherwise

Specifically, this objective function attempts to find a G′ that
minimizes the total cost of all changed packages by comparing

G′ with G(p, v). For each changed package, the cost depends

on what has been changed: if there is a migration between

two packages, we add a constant cost cmigration; if a package is
removed, we add a larger constant cost cremoval; if the version
is changed within the same package, we add a cost equal to

the distance between the changed versions (i.e., |pnew−pold|).
The two constant costs can be adjusted in practice. Using this

objective function, line 8-11 finds the top-N solutions (ordered

by the cost determined by objective) as the alternative graphs,
all of which do not contain license incompatibilities. To avoid

generating redundant solutions, we add a new constraint to

clauses to exclude all solutions similar to the current solution:∨
〈pold,pnew〉∈diff(G,G′)

{
pnew = 0, pnew = 0
0, otherwise

This means the new solution must not include all the changed

packages in the previous solution. The algorithm stops if the

solver returns unsat or it has found N viable solutions.

E. Implementation

We implement SILENCE in Python using the Python binding

of Z3 [76], the state-of-the-art SMT solver. To find the versions

satisfying version constraints, we simply use the Python stan-

dard library packaging which implements PEP 440 [77]. We

also implement an additional post-processing step to convert

the results of Algorithm 1 into a remediation report like:

Possible Remediations for [package] [version]:
1. Change project license to l1, l2, ... , or lM ;
2. (G′

1) Migrate [package] to [package];
3. (G′

2) Remove [package];
4. (G′

3) Pin [package] to [version];

In current implementation, we heuristically setN = 5,M =
3, cmigration = 10, and cremoval = 100, which we find to produce
satisfactory results (see Section V-F). We tested SILENCE on

the 202 incompatible releases in TOP (Table I). SILENCE can

generate results for all of them with a median running time

of 14.9 seconds (max = 295 seconds), which is satisfactory in

practical application scenarios (e.g., as a CI/CD workflow).

F. Evaluation

We evaluate the effectiveness of SILENCE by observing to

what extent can the remediations provided by SILENCE match

those proposed by developers in the upper half of Table III.

We do not compare against the final remediations because

SILENCE is intended to provide recommendations and support

the decision-making process. We observe that the final reme-

diation is contingent upon multiple factors from the specific

project context (e.g., the development cost of each remedia-

tion), so the decision should be left to project developers.

186

Authorized licensed use limited to: Peking University. Downloaded on December 22,2023 at 13:19:13 UTC from IEEE Xplore. Restrictions apply.

Of the 21 cases in upper Table III, developers proposed at

least one remediation in 19 cases, except for pytest-pylint
and dvc. We find that the results returned by SILENCE can

cover all the proposed removals, version-pinnings, and li-

cense change remediations in these cases. However, due to

the incompleteness of the Python migration dataset [29],

SILENCE can only cover two out of the 13 migration proposals

in these cases (mysqlclient to PyMySQL and unidecode to

text-unidecode). For the remaining 11 migration proposals,

SILENCE simply proposes to remove the incompatible depen-

dency, leaving developers to find migrations themselves. This

limitation can be easily overcome by adding more migration

rules to M once they are discovered. Based on this evaluation,

we conclude that SILENCE performs relatively well in the

remediation of license incompatibilities for Python packages.

G. Example

In this section, we use the example of fiftyone 0.18.0
in Figure 1 to illustrate how SILENCE can be applied to prac-

tice. For fiftyone 0.18.0, SILENCE provides the following

remediation report for the existing license incompatibilities:

Possible Remediations for fiftyone 0.18.0:
1. Change project license to GPL -3.0 - only ,

GPL -3.0 -or -later , or AGPL -3.0 - only;
2. Or make the following dependency changes :

a) Remove ndjson ;
b) Pin voxel51 -eta to 0.1.9;
c) Pin pillow to 6.2.2;
d) Pin imageio to 2.9.0;
e) Pin h11 to 0.11.0.

3. Or make the following dependency changes :
a) Remove voxel51 -eta;
b) Remove ndjson ;
c) Pin h11 to 0.11.0.

This report includes changes to pillow and imageio due to

the ripple effect of pinning voxel51-eta. The change to h11 is
included to fix dependency conflicts in the previously resolved

dependency tree, a positive side effect similar to SMT-solver-

based dependency resolution like SMARTPIP [60].

As shown in Table III, the developers of fiftyone finally

migrate ndjson to jsonlines. As mentioned in Section V-F,

this migration is not covered by an existing dataset [29]. By

adding 〈ndjson, jsonlines〉 to M, SILENCE returns:

Possible Remediations for fiftyone 0.18.0:
1. Change project license to GPL -3.0 - only ,

GPL -3.0 -or -later , or AGPL -3.0 - only;
2. Or make the following dependency changes :

a) Migrate ndjson to jsonlines ;
b) Pin voxel51 -eta version to 0.1.9;
c) Pin pillow to 6.2.2;
d) Pin h11 to 0.11.0;
e) Pin imageio to 2.9.0.

3. Or make the following dependency changes :
a) Migrate ndjson to jsonlines ;
b) Remove voxel51 -eta;
c) Pin h11 to 0.11.0.

With the above report, developers may conclude that ndjson
should be migrated to jsonlines. Although the report points

out that removal or downgrading voxel51-eta is necessary

for remediating patool, developers may find such remediation
undesirable because voxel51-eta is tightly integrated with

fiftyone. In fact, they are developed under the same GitHub

organization voxel51. In such cases, the dependency changes
must be made upstream. The developers of fiftyone may

then begin to negotiate with the developers of voxel51-eta,
who can use SILENCE to produce a report for themselves:

Possible Remediations for voxel51 -eta 0.8.1:
1. Change project license to GPL -3.0 - only ,

GPL -3.0 -or -later , or AGPL -3.0 - only;
2. Or make the following dependency changes :

a) Migrate ndjson to jsonlines ;
b) Migrate patool to py7zr .

3. Or make the following dependency changes :
a) Migrate ndjson to jsonlines ;
b) Migrate patool to rarfile .

... (omitted due to space limitations)

H. Preliminary User Study

To evaluate how developers perceive the usefulness of

SILENCE, we carefully select packages from TOP that: 1) have

incompatible releases in our dataset; 2) still have incompati-

bilities in their latest releases; 3) actively use an issue tracker;

4) have no previous issues about licensing. This results in

ten packages. After manual inspection, we exclude one false

positive, dvc, which is not actually incompatible with its GPL-
licensed dependency pygit2 due to its explicit statement of

link exception [78]. We then open nine issues with the report

by SILENCE, summarized in the lower half of Table III.

At the time of writing (August 2023), we received responses

in seven issues, among which five packages have completely

or partially adopted one of the remediations suggested by

SILENCE. Notably, glean-parser subsequently implemented

license checking in its CI/CD workflow (#578), indicating the

need for and usefulness of integrating tools like SILENCE into

the development process. sphinx-autoapi accepted the mi-

gration suggestion but migrated to another package not recom-

mended by SILENCE. The remaining two packages, however,

closed our issue. One package responded that although they

acknowledge this incompatibility, they will only fix it if it

actually causes issues to end users (which they believe is

unlikely because their package is a CI tool, not a library).

In conclusion, five of the seven responded packages adopted

one of the suggestions provided by SILENCE. The high adop-

tion rate signifies the relevance of license incompatibilities to

PyPI developers, their positive attitude towards SILENCE, and

the effectiveness of SILENCE in addressing incompatibilities.

VI. DISCUSSION

A. Implications

In this section, we discuss the implications of our results for

developers, package distribution platforms, and researchers.

1) Developers: The results of RQ1 show the prevalence of

packages without accurate or complete licensing information

in the PyPI ecosystem. However, if a package lacks licensing

information, it is not really open-source [79], posing difficul-

ties for others to legally use this package. Hence, developers

should pay meticulous attention to the licensing of their

dependencies and provide precise licensing information for

their own packages to the best of their abilities. Additionally,

10.96% of the TOP packages have undergone at least one

187

Authorized licensed use limited to: Peking University. Downloaded on December 22,2023 at 13:19:13 UTC from IEEE Xplore. Restrictions apply.

licensing change as revealed in RQ1, which may impact

numerous downstream projects and lead to incompatibilities.

Therefore, developers of popular and influential packages

should exercise more caution than those of common projects

when making decisions regarding licensing changes. Finally,

RQ2 reveals that most of the license incompatibilities in the

PyPI ecosystem are caused by direct dependencies (74.0%).

These incompatibilities can be easily detected by parsing de-

pendency manifest files and license checking can be integrated

into CI/CD workflow, as evidenced by our preliminary user

study. However, an accurate dependency graph like in this

paper is needed to thoroughly detect license incompatibilities.

2) Package Distribution Platforms: In Section III-B, we

find that the license information of a large number of PyPI

packages on the PyPI platform is missing and the license
field in the metadata does not have a uniform format, leading

to the difficulty of identifying package’s license. Therefore,

package management platforms can enhance their manage-

ment in this aspect by providing standardized options and

requiring developers to provide accurate license information

when uploading packages. Moreover, the platform can also

perform license compatibility checks periodically, e.g., during

the package uploading process, to ensure that the uploaded

packages are compliant with licensing requirements.

3) Researchers: Our study sheds light on further research

regarding license incompatibility. First, migration is the most

common license incompatibility remediation practice (RQ3).
Therefore, researchers can explore more accurate package

migration recommendation techniques and build more compre-

hensive package migration datasets to help developers make

more informed decisions. Second, we find that the licensing in-

formation declared by package developers is noisy. Therefore,

better license detection techniques can be developed to capture

these packages’ licensing information in the future. Finally,

our study also lays a foundation for further research on the

license incompatibility remediation practices and automated

solutions in other packaging ecosystems like NPM.

B. Limitations

We discuss some notable limitations of our dataset, the

empirical study, and the SILENCE approach, as follows.

In terms of the PyPI dependency dataset, its main limitation

is that the resolved dependency graphs at time t may differ

from the actual dependency graphs resolved by popular tools

like pip or Poetry at the same time. However, since each of

them uses different resolution algorithms and may change its

algorithms in new versions (e.g., pip implements backtracking
since version 20.3 [61]), we believe accurate historical repli-

cation is impossible. Compared with using pip install, our
custom solver is orders of magnitude faster and able to resolve

dependency graphs at arbitrary time points. Despite possible

deviations, we believe this approach is the most suitable for

such large-scale studies (e.g., a similar approach is also used

by Liu et al. [14] for studying security vulnerabilities in npm).

Several limitations pertain to the PyPI licensing data. First,

this dataset does not consider dual licensing, multi-licensing,

or license exceptions used by some OSS [39], [80]. Although

our manual evaluation shows that they are rare in PyPI

(Section III-B1), they may occasionally introduce false incom-

patibilities in the dataset. Future work is needed to take these

corner cases into consideration. Second, our study ignores in-

code licenses, which may also have incompatibilities with the

package-wide license [45]. However, studying such incompat-

ibilities would require a different methodology and is out of

the scope of our study. Finally, none of the authors are law

professionals and the dataset may contain inaccurate license

incompatibilities. To alleviate this threat, we have tried our

best to base our study on some sort of “joint consensus” among

OSS developers, as reflected by reliable sources of information

(e.g., OSI, FSF, and prior research). Even if some of the data

are proven to be incorrect, we believe the methodology and

the SILENCE approach presented in this paper are general and

can be easily adapted to any new compatibility criterion.

In terms of external validity, the dataset and its construction

process are largely unique and designed for PyPI, a flourishing

packaging ecosystem of great importance in many application

domains (e.g., AI). However, future work is needed for other

packaging ecosystems, as they have different dependency

resolution behaviors [81] and licensing data format. The reme-

diation practices in RQ3 are identified from a small number of

popular Python packages, but we believe the general pattern

should be applicable to proprietary Python projects and even

projects in other ecosystems (future work is needed to validate

our belief). The SILENCE approach is also general and can be

extended to other packaging ecosystems by taking their unique

dependency resolution behaviors into consideration [73].

VII. CONCLUSION

In this paper, we contribute 1) a PyPI dependency & licens-

ing dataset, 2) a large-scale study of license incompatibilities

and their remediation practices in the PyPI, and 3) an SMT-

solver-based remediation approach, SILENCE. As packaging

ecosystems are likely to grow more complex [10], we believe

our contributions form a valuable reference for those willing

to improve the state of OSS licensing compliance in modern

packaging ecosystems. In the future, we plan to integrate our

license incompatibility detection and remediation tool into

CI/CD tools, e.g., GitHub workflow.

VIII. DATA AVAILABILITY

We provide a replication package at:

https://github.com/osslab-pku/SILENCE

ACKNOWLEDGMENT

This work is sponsored by the National Natural Science

Foundation of China 61825201 and 62332001. We would like

to extend our appreciation to Chao Wang and Xin Wu for their

invaluable insights on license compliance.

188

Authorized licensed use limited to: Peking University. Downloaded on December 22,2023 at 13:19:13 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Xu, Y. Gao, L. Fan, Z. Liu, Y. Liu, and H. Ji, “LiDetector: License
incompatibility detection for open source software,” ACM Trans. Softw.
Eng. Methodol., vol. 32, no. 1, pp. 22:1–22:28, 2023.

[2] (2023, April) OSI approved licenses. [Online]. Available: https:
//opensource.org/licenses/

[3] (2023, April) GNU general public license version 3. [Online]. Available:
https://www.gnu.org/licenses/gpl-3.0.html

[4] (2023, April) The MIT license. [Online]. Available: https://opensource.
org/license/mit/

[5] L. Rosen, “Open source licensing,” Software Freedom and Intellectual
Property Law, 2005.

[6] M. Sojer, O. Alexy, S. Kleinknecht, and J. Henkel, “Understanding the
drivers of unethical programming behavior: The inappropriate reuse of
internet-accessible code,” J. Manag. Inf. Syst., vol. 31, no. 3, pp. 287–
325, 2014.

[7] (2022, Augest) PyPI. [Online]. Available: https://pypi.org/

[8] (2022, Augest) Maven. [Online]. Available: https://mvnrepository.com/

[9] (2022, Augest) npm. [Online]. Available: https://www.npmjs.com/

[10] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison
of dependency network evolution in seven software packaging
ecosystems,” Empir. Softw. Eng., vol. 24, no. 1, pp. 381–416, 2019.
[Online]. Available: https://doi.org/10.1007/s10664-017-9589-y

[11] (2023, May) Glossary — Python packaging user guide. [Online].
Available: https://packaging.python.org/en/latest/glossary/

[12] S. Qiu, D. M. Germán, and K. Inoue, “Empirical study on dependency-
related license violation in the JavaScript package ecosystem,” J.
Inf. Process., vol. 29, pp. 296–304, 2021. [Online]. Available:
https://doi.org/10.2197/ipsjjip.29.296

[13] I. S. Makari, A. Zerouali, and C. D. Roover, “Prevalence and evolution
of license violations in npm and RubyGems dependency networks,”
in Reuse and Software Quality - 20th International Conference on
Software and Systems Reuse, ICSR 2022, Montpellier, France, June 15-
17, 2022, Proceedings, ser. Lecture Notes in Computer Science, vol.
13297. Springer, 2022, pp. 85–100.

[14] C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng, “Demystifying
the vulnerability propagation and its evolution via dependency trees in
the NPM ecosystem,” in 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022. ACM, 2022, pp. 672–684.

[15] (2023, April) pip. [Online]. Available: https://pip.pypa.io/en/stable/

[16] (2023, April) Poetry. [Online]. Available: https://python-poetry.org/

[17] (2023, April) Frequently asked questions about the GNU licenses.
[Online]. Available: https://www.gnu.org/licenses/gpl-faq.html

[18] M. Sojer and J. Henkel, “License risks from ad hoc reuse of code
from the internet,” Commun. ACM, vol. 54, no. 12, pp. 74–81, 2011.
[Online]. Available: https://doi.org/10.1145/2043174.2043193

[19] D. A. Almeida, G. C. Murphy, G. Wilson, and M. Hoye, “Investigating
whether and how software developers understand open source software
licensing,” Empir. Softw. Eng., vol. 24, no. 1, pp. 211–239, 2019.

[20] C. Vendome, M. L. Vásquez, G. Bavota, M. D. Penta, D. M. Germán,
and D. Poshyvanyk, “License usage and changes: A large-scale study
of Java projects on GitHub,” in Proceedings of the 2015 IEEE 23rd
International Conference on Program Comprehension, ICPC 2015,
Florence/Firenze, Italy, May 16-24, 2015. IEEE Computer Society,
2015, pp. 218–228.

[21] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. M.
German, and D. Poshyvanyk, “When and why developers adopt and
change software licenses,” in 2015 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2015, Bremen, Germany,
September 29 - October 1, 2015. IEEE Computer Society, 2015, pp.
31–40. [Online]. Available: https://doi.org/10.1109/ICSM.2015.7332449

[22] I. Pashchenko, D. L. Vu, and F. Massacci, “A qualitative study of
dependency management and its security implications,” in CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020, J. Ligatti, X. Ou,
J. Katz, and G. Vigna, Eds. ACM, 2020, pp. 1513–1531. [Online].
Available: https://doi.org/10.1145/3372297.3417232

[23] (2023, April) LicenseCheck. [Online]. Available: https://github.com/
FHPythonUtils/LicenseCheck

[24] (2023, April) LicenseFinder. [Online]. Available: https://github.com/
pivotal/LicenseFinder

[25] D. M. Germán and A. E. Hassan, “License integration patterns:
Addressing license mismatches in component-based development,” in
31st International Conference on Software Engineering, ICSE 2009, May
16-24, 2009, Vancouver, Canada, Proceedings. IEEE, 2009, pp. 188–
198. [Online]. Available: https://doi.org/10.1109/ICSE.2009.5070520

[26] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying open-
source license violation and 1-day security risk at large scale,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017. ACM, 2017, pp. 2169–2185.

[27] S. van der Burg, E. Dolstra, S. McIntosh, J. Davies, D. M. Germán,
and A. Hemel, “Tracing software build processes to uncover license
compliance inconsistencies,” in ACM/IEEE International Conference
on Automated Software Engineering, ASE ’14, Vasteras, Sweden -
September 15 - 19, 2014. ACM, 2014, pp. 731–742. [Online].
Available: https://doi.org/10.1145/2642937.2643013

[28] D. M. Germán and M. D. Penta, “A method for open source license
compliance of Java applications,” IEEE Softw., vol. 29, no. 3, pp.
58–63, 2012. [Online]. Available: https://doi.org/10.1109/MS.2012.50

[29] H. Gu, H. He, and M. Zhou, “Self-admitted library migrations in
Java, JavaScript, and Python packaging ecosystems: A comparative
study,” in IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2023, Taipa, Macao, March
21-24, 2023. IEEE, 2023, pp. 627–638. [Online]. Available:
https://doi.org/10.1109/SANER56733.2023.00064

[30] R. Gobeille, “The FOSSology project,” in Proceedings of the 2008
International Working Conference on Mining Software Repositories,
MSR 2008 (Co-located with ICSE), Leipzig, Germany, May 10-11,
2008, Proceedings. ACM, 2008, pp. 47–50. [Online]. Available:
https://doi.org/10.1145/1370750.1370763

[31] T. Tuunanen, J. Koskinen, and T. Kärkkäinen, “Automated software
license analysis,” Autom. Softw. Eng., vol. 16, no. 3-4, pp. 455–490,
2009. [Online]. Available: https://doi.org/10.1007/s10515-009-0054-z

[32] D. M. Germán, Y. Manabe, and K. Inoue, “A sentence-matching
method for automatic license identification of source code files,” in
ASE 2010, 25th IEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, September 20-24, 2010.
ACM, 2010, pp. 437–446. [Online]. Available: https://doi.org/10.1145/
1858996.1859088

[33] M. D. Penta, D. M. Germán, and G. Antoniol, “Identifying licensing of
jar archives using a code-search approach,” in Proceedings of the 7th
International Working Conference on Mining Software Repositories,
MSR 2010 (Co-located with ICSE), Cape Town, South Africa, May
2-3, 2010, Proceedings. IEEE Computer Society, 2010, pp. 151–160.
[Online]. Available: https://doi.org/10.1109/MSR.2010.5463282

[34] X. Liu, L. Huang, J. Ge, and V. Ng, “Predicting licenses for changed
source code,” in 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA, November 11-
15, 2019. IEEE, 2019, pp. 686–697.

[35] (2023, April) ScanCode. [Online]. Available: https://github.com/nexB/
scancode-toolkit

[36] (2023, April) Licensee. [Online]. Available: https://github.com/licensee/
licensee

[37] (2023, April) SPDX license list. [Online]. Available: https://spdx.org/
licenses/

[38] M. D. Penta, D. M. Germán, Y. Guéhéneuc, and G. Antoniol,
“An exploratory study of the evolution of software licensing,” in
Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE 2010, Cape Town, South
Africa, 1-8 May 2010. ACM, 2010, pp. 145–154. [Online]. Available:
https://doi.org/10.1145/1806799.1806824

[39] S. Comino and F. M. Manenti, “Dual licensing in open source software
markets,” Inf. Econ. Policy, vol. 23, no. 3-4, pp. 234–242, 2011.
[Online]. Available: https://doi.org/10.1016/j.infoecopol.2011.07.001

[40] R. M. Meloca, G. Pinto, L. Baiser, M. Mattos, I. Polato, I. S. Wiese,
and D. M. Germán, “Understanding the usage, impact, and adoption of
non-OSI approved licenses,” in Proceedings of the 15th International
Conference on Mining Software Repositories, MSR 2018, Gothenburg,
Sweden, May 28-29, 2018. ACM, 2018, pp. 270–280.

[41] J. P. Moraes, I. Polato, I. Wiese, F. Saraiva, and G. Pinto, “From
one to hundreds: Multi-licensing in the javascript ecosystem,” Empir.
Softw. Eng., vol. 26, no. 3, p. 39, 2021. [Online]. Available:
https://doi.org/10.1007/s10664-020-09936-2

189

Authorized licensed use limited to: Peking University. Downloaded on December 22,2023 at 13:19:13 UTC from IEEE Xplore. Restrictions apply.

[42] C. Vendome, D. M. Germán, M. D. Penta, G. Bavota, M. L. Vásquez,
and D. Poshyvanyk, “To distribute or not to distribute?: Why licensing
bugs matter,” in Proceedings of the 40th International Conference on
Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June
03, 2018. ACM, 2018, pp. 268–279.

[43] D. M. Germán, M. D. Penta, and J. Davies, “Understanding and
auditing the licensing of open source software distributions,” in The
18th IEEE International Conference on Program Comprehension,
ICPC 2010, Braga, Minho, Portugal, June 30-July 2, 2010.
IEEE Computer Society, 2010, pp. 84–93. [Online]. Available:
https://doi.org/10.1109/ICPC.2010.48

[44] G. M. Kapitsaki, F. Kramer, and N. D. Tselikas, “Automating the license
compatibility process in open source software with SPDX,” J. Syst.
Softw., vol. 131, pp. 386–401, 2017.

[45] T. Wolter, A. Barcomb, D. Riehle, and N. Harutyunyan, “Open
source license inconsistencies on GitHub,” ACM Trans. Softw.
Eng. Methodol., dec 2022, just Accepted. [Online]. Available:
https://doi.org/10.1145/3571852

[46] R. Pfeiffer, “License incompatibilities in software ecosystems,” CoRR,
vol. abs/2203.01634, 2022. [Online]. Available: https://doi.org/10.
48550/arXiv.2203.01634

[47] T. F. Gordon, “Analyzing open source license compatibility issues
with Carneades,” in The 13th International Conference on Artificial
Intelligence and Law, Proceedings of the Conference, June 6-10, 2011,
Pittsburgh, PA, USA. ACM, 2011, pp. 51–55. [Online]. Available:
https://doi.org/10.1145/2018358.2018364

[48] M. Papoutsoglou, G. M. Kapitsaki, D. M. Germán, and L. Angelis, “An
analysis of open source software licensing questions in stack exchange
sites,” J. Syst. Softw., vol. 183, p. 111113, 2022.

[49] G. M. Kapitsaki and G. Charalambous, “Modeling and recommending
open source licenses with findOSSLicense,” IEEE Trans. Software
Eng., vol. 47, no. 5, pp. 919–935, 2021. [Online]. Available:
https://doi.org/10.1109/TSE.2019.2909021

[50] W. Xu, X. Wu, R. He, and M. Zhou, “LicenseRec: Knowledge
based open source license recommendation for OSS projects,” in
45th IEEE/ACM International Conference on Software Engineering:
ICSE 2023 Companion Proceedings, Melbourne, Australia, May
14-20, 2023. IEEE, 2023, pp. 180–183. [Online]. Available:
https://doi.org/10.1109/ICSE-Companion58688.2023.00050

[51] (2023, April) Choose an open-source license. [Online]. Available:
https://choosealicense.com/

[52] K. J. Stewart, A. P. Ammeter, and L. M. Maruping, “Impacts
of license choice and organizational sponsorship on user interest
and development activity in open source software projects,” Inf.
Syst. Res., vol. 17, no. 2, pp. 126–144, 2006. [Online]. Available:
https://doi.org/10.1287/isre.1060.0082

[53] R. Sen, C. Subramaniam, and M. L. Nelson, “Determinants of
the choice of open source software license,” J. Manag. Inf.
Syst., vol. 25, no. 3, pp. 207–240, 2009. [Online]. Available:
https://doi.org/10.2753/mis0742-1222250306

[54] M. Sojer and J. Henkel, “Code reuse in open source software
development: Quantitative evidence, drivers, and impediments,” J.
Assoc. Inf. Syst., vol. 11, no. 12, p. 2, 2010. [Online]. Available:
https://doi.org/10.17705/1jais.00248

[55] (2023, April) Module counts. [Online]. Available: http://www.
modulecounts.com/

[56] (2023, April) PyPI BigQuery dataset. [Online]. Available: https:
//warehouse.pypa.io/api-reference/bigquery-datasets.html

[57] (2023, April) PEP 508 - Dependency specification for Python software
packages. [Online]. Available: https://peps.python.org/pep-0508/

[58] (2023, April) Top PyPI packages. [Online]. Available: https://hugovk.
github.io/top-pypi-packages/

[59] (2023, May) Core metadata specifications — Python packaging
user guide. [Online]. Available: https://packaging.python.org/en/latest/
specifications/core-metadata/#requires-dist-multiple-use

[60] C. Wang, R. Wu, H. Song, J. Shu, and G. Li, “smartPip: A
smart approach to resolving Python dependency conflict issues,” in
37th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2022, Rochester, MI, USA, October 10-14,
2022. ACM, 2022, pp. 93:1–93:12. [Online]. Available: https:
//doi.org/10.1145/3551349.3560437

[61] (2023, April) Backtracking in dependency resolution - pip
documentation v23.1.1. [Online]. Available: https://pip.pypa.io/en/
stable/topics/dependency-resolution/#backtracking

[62] Y. Wang, M. Wen, Y. Liu, Y. Wang, Z. Li, C. Wang, H. Yu,
S. Cheung, C. Xu, and Z. Zhu, “Watchman: Monitoring dependency
conflicts for Python library ecosystem,” in ICSE ’20: 42nd International
Conference on Software Engineering, Seoul, South Korea, 27 June
- 19 July, 2020. ACM, 2020, pp. 125–135. [Online]. Available:
https://doi.org/10.1145/3377811.3380426

[63] (2023, April) Sample size calculator. [Online]. Available: https:
//www.calculator.net/sample-size-calculator.html

[64] (2023, April) Various licenses and comments about them. [Online].
Available: https://directory.fsf.org/wiki/License:Apache2.0

[65] (2023, April) What is derivative work? [Online]. Available: https:
//opensource.stackexchange.com/questions/6427/

[66] (2023, April) What are the arguments for considering dynamic
links to constitute derivative works? [Online]. Available: https:
//opensource.stackexchange.com/questions/1187/

[67] (2023, April) What are the arguments for considering dynamic
links not to constitute derivative works? [Online]. Available: https:
//opensource.stackexchange.com/questions/1188/

[68] S. H. Khandkar, “Open coding,” University of Calgary, vol. 23, p. 2009,
2009.

[69] H. He, Y. Xu, Y. Ma, Y. Xu, G. Liang, and M. Zhou, “A multi-
metric ranking approach for library migration recommendations,” in 28th
IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2021, Honolulu, HI, USA, March 9-12, 2021.
IEEE, 2021, pp. 72–83.

[70] H. He, R. He, H. Gu, and M. Zhou, “A large-scale empirical study on
java library migrations: prevalence, trends, and rationales,” in ESEC/FSE
’21: 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Athens,
Greece, August 23-28, 2021. ACM, 2021, pp. 478–490. [Online].
Available: https://doi.org/10.1145/3468264.3468571

[71] H. He, Y. Xu, X. Cheng, G. Liang, and M. Zhou, “MigrationAdvisor:
Recommending library migrations from large-scale open-source data,”
in 43rd IEEE/ACM International Conference on Software Engineering:
Companion Proceedings, ICSE Companion 2021, Madrid, Spain, May
25-28, 2021. IEEE, 2021, pp. 9–12.

[72] F. Mancinelli, J. Boender, R. D. Cosmo, J. Vouillon, B. Durak, X. Leroy,
and R. Treinen, “Managing the complexity of large free and open source
package-based software distributions,” in 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE 2006), 18-22
September 2006, Tokyo, Japan. IEEE Computer Society, 2006, pp.
199–208. [Online]. Available: https://doi.org/10.1109/ASE.2006.49

[73] D. Pinckney, A. Guha, M. Culpo, and T. Gamblin, “Flexible and optimal
dependency management via Max-SMT,” CoRR, vol. abs/2203.13737,
2022. [Online]. Available: https://doi.org/10.48550/arXiv.2203.13737

[74] L. Zhang, C. Liu, Z. Xu, S. Chen, L. Fan, L. Zhao, J. Wu, and
Y. Liu, “Compatible remediation on vulnerabilities from third-party
libraries for Java projects,” CoRR, vol. abs/2301.08434, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2301.08434

[75] (2023, April) Semantic versioning. [Online]. Available: https://semver.
org/

[76] L. M. de Moura and N. S. Bjørner, “Z3: an efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, ser.
Lecture Notes in Computer Science, vol. 4963. Springer, 2008, pp.
337–340.

[77] (2023, April) PEP 440 – Version identification and dependency
specification. [Online]. Available: https://peps.python.org/pep-0440/

[78] (2023, April) GPLv2 with linking exception. [Online]. Available:
https://www.pygit2.org/#license-gplv2-with-linking-exception

[79] (2023, April) OSI the open source definition. [Online]. Available:
https://opensource.org/osd/

[80] C. Vendome, M. L. Vásquez, G. Bavota, M. D. Penta, D. M. Germán,
and D. Poshyvanyk, “Machine learning-based detection of open source
license exceptions,” in Proceedings of the 39th International Conference
on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-
28, 2017. IEEE / ACM, 2017, pp. 118–129.

[81] P. Abate, R. D. Cosmo, G. Gousios, and S. Zacchiroli, “Dependency
solving is still hard, but we are getting better at it,” in 27th IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering,
SANER 2020, London, ON, Canada, February 18-21, 2020. IEEE,
2020, pp. 547–551.

190

Authorized licensed use limited to: Peking University. Downloaded on December 22,2023 at 13:19:13 UTC from IEEE Xplore. Restrictions apply.

