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Abstract—The wide use of Deep learning (DL) has not been followed by the corresponding advances in software engineering (SE) for

DL. Research shows that developers writing DL software have specific development stages (i.e., SE4DL stages) and face new DL-

specific problems. Despite substantial research, it is unclear how DL developers’ SE needs for DL vary over stages, application types,

or if they change over time. To help focus research and development efforts on DL-development challenges, we analyze 92,830 Stack

Overflow (SO) questions and 227,756 READMEs of public repositories related to DL. Latent Dirichlet Allocation (LDA) reveals 27 topics

for the SO questions where 19 (70.4%) topics mainly relate to a single SE4DL stage, and eight topics span multiple stages. Most

questions concern Data Preparation andModel Setup stages. The relative rates of questions for 11 topics have increased, for eight

topics decreased over time. Questions for the former 11 topics had a lower percentage of accepting an answer than the remaining

questions. LDA on README files reveals 16 distinct application types for the 227k repositories. We apply the LDA model fitted on

READMEs to the 92,830 SO questions and find that 27% of the questions are related to the 16 DL application types. The most asked

question topic varies across application types, with half primarily relating to the second and third stages. Specifically, developers ask

the most questions about topics primarily relating to Data Preparation (2nd) stage for four mature application types such as

Image Segmentation, and topics primarily relating toModel Setup (3rd) stage for four application types concerning emerging methods

such as Transfer Learning. Based on our findings, we distill several actionable insights for SE4DL research, practice, and education, such

as better support for using trained models, application-type specific tools, and teaching materials.

Index Terms—Software engineering needs for deep learning, mining software repositories, topic modeling, stack overflow

Ç

1 INTRODUCTION

DEEP learning (DL) has achieved tremendous success in
different tasks such as image recognition [1] and object

detection [2] owing to its strong representation capability
and the explosive increase of data and computing power in
recent years. Many DL frameworks (e.g., TensorFlow [3],
Keras [4], and PyTorch [5]) are proposed to help developers
quickly transfer their ideas into applications and are widely
used by developers. Based on the architecture documenta-
tion of various DL frameworks, Han et al. [6] found that to
build DL applications with DL frameworks, developers

usually go through seven stages starting from Preliminary
Preparation, to Data Preparation, and to Model Setup, Model
Training, Model Evaluation, Model Tuning, and ending with
Model Prediction as shown in Table 1. In this paper, we refer
to the software development in the DL domain, including
the process consisting of the seven stages, as: software engi-
neering (SE) for deep learning (SE4DL).

Although DL frameworks facilitate SE4DL, SE4DL still
poses unique problems to developers that differ from reg-
ular software engineering. In general, developers use DL
frameworks to define DL model structure and run-time
configurations, then feed large-scale training data to train
(adjust the parameters of) the model [7], [8]. Developers
usually set aside some data not used for training to evalu-
ate and tune the model. The above process is usually
experimental: it consists of adjusting the data, model
structure, and run-time configurations in a trial-and-error
manner. As a result of such iterations, DL developers face
problems across SE4DL stages. Examples include manag-
ing large-scale datasets at Data Preparation stage, design-
ing effective model structures at Model Setup stage, and
specifying efficient run-time configurations at Model
Training stage.

The SE research community has investigated SE4DL
needs in some detail. For example, researchers have exten-
sively analyzed challenges and faults in general without
separating them into SE4DL stages [7], [8], [9], [10], [11],
and investigated deployment challenges and faults at the
model prediction stage [12], [13], [14]. Little work [6], [15],
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[16] investigated SE4DL stages. Alshagiti et al. [15] labeled
the stages of 684 Stack Overflow (SO) questions to investi-
gate the most challenging stages; Islam et al. [16] manually
labeled the stages of 970 bugs collected from SO and GitHub
to reveal bug-prone stages. These two papers were based on
a small sample size and didn’t reveal what kind of problems
are at each stage. Although Han et al. [6] applied LDA on a
large-scale dataset collected from SO questions and GitHub
issues, they investigated stages under an improper assump-
tion that an LDA topic exclusively belongs to one stage. To
prioritize efforts for improving SE4DL, we need a better
understanding of the problems developers face at each
stage and among different types of DL applications. Fur-
thermore, it is important to identify what problems are
already solved, at least partially, and what the most recent
challenges are. Specifically, we lack understandings of: (1)
how problems faced by DL developers are distributed over
SE4DL stages, and (2) how these problems vary over time
and application types. Given the rapid development of DL
and its wide adoption in distinct tasks, such understanding
will promote SE4DL research, practice, and education to
meet developers’ needs in a more targeted way. It may help
researchers, practitioners, and educators understand cur-
rent urgent SE4DL problems and design automated tools to
mitigate them, improve DL framework APIs and documen-
tation, and design customized teaching materials for differ-
ent application types.

To investigate the variability of SE4DL problems, we
decide to use two data sources. First, to understand prob-
lems faced by DL developers, we analyze DL-related
questions from Stack Overflow (SO). Second, to under-
stand the variety of DL-related projects, we gather
approximately all public Git repositories and analyze
their README files. Specifically, we answer the following
research questions:

RQ1 (Stage Variability). How are problems faced by DL
developers distributed over SE4DL stages? LDA reveals 27
topics for 92,830 DL-related SO questions. For each of
the 27 topics, we randomly sample 63-67 questions (to
obtain a 90% confidence level) and manually label the

SE4DL stages for them. We find that 19 topics concen-
trate on a single SE4DL stage, and eight topics span mul-
tiple stages. The 19 single-stage topics cover all seven
SE4DL stages and the eight multiple-stage topics are
mainly about framework APIs and application tasks.
Overall, developers ask the most about the second (Data
Preparation) and third (Model Setup) stages with 23.3%
and 30.7% questions respectively, in contrast to the for-
mer study that found the first (Preliminary Preparation)
and fourth (Model Training) stages to be the stages with
the most questions [6].

RQ2 (Time Variability). How do these problems vary over
time? We apply the Mann-Kendall trend test to identify
the change of relative rate of questions for each question
topic. We find the relative rates of questions for 11 topics
have increased, for eight topics decreased over time.
Questions for the 11 trending-up topics had a lower per-
centage of having an accepted answer than for the
remaining topics. The topics that increase the most (indi-
cated by Sen’s slope) are Code Error, Training Anomaly,
Model Load, and Model Conversion, and the topic that
decreases the most is Graph Session. The topic developers
ask the most questions about, Installation Error hasn’t
increased or decreased significantly over time.

RQ3 (Application Variability). How do these problems vary
over application types? We apply LDA on README files
of 227k repositories and identify 16 distinct application
types. We apply the LDA model fitted on the 227k
README files to relate the SO questions to application
types. We find that the most asked question topic varies
across application types, with half primarily relating to
the second and third stages. Specifically, developers ask
the most questions about topics primarily relating to
Data Preparation (2nd) stage for four mature application
types such as Image Segmentation and ask the most ques-
tions about topics primarily relating to Model Setup (3rd)
stage for four application types concerning emerging
methods such as Transfer Learning.

In addition to answering these RQs that reveal the var-
ied and interconnected landscape of DL development
stages, developer needs, and DL-applications types, our
contributions also include methodological improvements.
From a comprehensive set of topics based on a careful
LDA analysis of SO questions and repository READMEs
to the reuse of LDA topics derived from repository
READMEs for classifying SO questions, they all bring
robustness improvements for the notoriously hard topic
analysis area. We believe that our approach of using all
public data to investigate an area of software develop-
ment could be applied not just on SE4DL problems but
more generally. Finally, based on our findings, we distill
several actionable insights for SE4DL research, practice,
and education.

The rest of the paper is organized as follows. The data
collection, data preprocessing, and topic modeling pro-
cesses are described in Section 2. Sections 3, 4, and 5 pres-
ent the methods and results for the three research
questions respectively. Section 6 discusses the implica-
tions for SE4DL research, practice, and education. We dis-
cuss limitations in Section 7 and review the related work
in Section 8. Finally, we conclude the paper in Section 9.

TABLE 1
Definition of SE4DL Stages [6]

Stage Description

Preliminary Preparation Set up environment for
developing DL applications.

Data Preparation Convert raw data into the format
required by the model.

Model Setup Create neural network models
with APIs provided by DL
frameworks.

Model Training Select loss function and
optimization method, and feed
data to train models with
acceleration devices.

Model Evaluation Evaluate models trained at the
previous stage.

Model Tuning Fix strange evaluation results and
improve model’s performance.

Model Prediction Use tuned model to make
predictions on new data.
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2 DATA PREPARATION

This study follows the process depicted in Fig. 1. We select
TensorFlow, Keras, and PyTorch for this study for three
reasons:

1) They are under active development, allowing us to
observe recent trends and to ensure the timeliness of
the results;

2) The increasing numbers of downstream repositories
and Stack Overflow questions better approximate
current and emerging practical problems and appli-
cation types;

3) They cover a broad range of DL framework imple-
mentations that represent past and emerging usage
scenarios.

For these frameworks, we collect questions at Stack Over-
flow (SO) and README files of public repositories as
described in Section 2.1, that represent the problems DL
developers ask about and the application types DL develop-
ers work on. We then preprocess these artifacts (Section 2.2)
and perform topic modeling with LDA on questions and
READMEs, respectively (Section 2.3). Our data and scripts
can be accessed at: https://github.com/KyleGau/SE4DL.

2.1 Data Collection

2.1.1 SO Data

SO is commonly used in research to understand problems
faced by developers [8], [13], [17], [18], [19]. We down-
loaded a complete Stack Overflow Posts dataset from the
official Stack Exchange Data Dump1, which contains SO
posts created from July 31, 2008, to March 1, 2021. It con-
tains two types of posts: questions and answers. In this
study, we focus on questions to gauge developers’ needs.
Each question may have one to five tags indicating related
concepts and technologies. We regard a question as a DL-
related question if at least one of its tags is “tensorflow”,
“keras”, or “pytorch”, resulting in 92,830 DL-related ques-
tions. The Questions column of Table 2 shows the number of
questions related to each framework.

Fig. 2a shows the number of quarterly created questions
related to each framework. All three frameworks are trend-
ing up over the years with minor differences. It suggests
either more DL developers are using SO over time or exist-
ing developers encounter new problems. TensorFlow ques-
tions show a sharp increase before 2017Q2, followed by two
peaks in 2018Q2 and 2020Q2. The peaks may be related to
the releases of TensorFlow 1 and TensorFlow 2, which intro-
duced many breaking changes and sparked many questions
initially. Once the number of questions accumulates to a cer-
tain level, the number of new questions gradually decreases
and stabilizes. Keras questions also show a peak in 2020Q2
partly because it comes packaged with TensorFlow 2 [20].
PyTorch questions keep increasing and stabilize after
2020Q2.

2.1.2 WoC Data

To investigate how problems faced by developers vary over
application types (RQ3), we need to address two challenges:
identifying application types and relating SO questions to
application types. We apply LDA on README files of col-
lected repositories to identify application types of the repos-
itories. Then, we use the fitted LDA model on README
files to infer the application types of SO questions. Reposito-
ries (many of which are on GitHub) have tags or labels and
README files that represent a natural language description
of the project. Both could be used to identify application
types. There are, however, several advantages of using
READMEs instead of repository labels: 1) It allows us to
analyze more DL-related repositories to mitigate sample
bias since the ratio of repositories with READMEs is much
higher than that of repositories with labels (0.3% based on
GHTorrent [21]’s latest dump (March 6, 2021)). 2) READ-
MEs are more suitable to be fed to LDA to fit a model as
LDA performs poorly on short text [22] and README files
usually contain more words than labels.

Fig. 1. Overview of methodology.

TABLE 2
Statistics of Collected Data

Framework Questions Repositories READMEs

Raw Preprocessed

TensorFlow 67,400 568,182 237,689 127,836
Keras 34,002 402,774 176,692 95,185
PyTorch 10,986 294,480 124,991 63,999
Total 92,830 998,514 429,204 227,756

Fig. 2. The trend of quarterly created DL-related questions and
repositories.1. https://archive.org/details/stackexchange
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We use WoC to collect public repository READMEs
needed in this study. WoC2 is an infrastructure for mining
the universe of open source version control system (VCS)
data. It collects Git objects [23] of open source repositories
across code hosting platforms, curates the collected data by,
for example, deforking repositories and parsing dependen-
cies from each version of source code files (i.e., technical
dependencies), and provides a variety of ways to query the
data. We use WoC query3 to identify all versions of all files
that import packages associated with at least one of the
frameworks we study (TensorFlow, Keras, and PyTorch).
The format of a technical dependency record is: commit;
repository excluding forks;timestamp;author;

blob;language used in WoC;language determined

by ctags
4
;filename;modules separated by semico-

lon. An example technical dependency record that
imported TensorFlow is in Fig. 3. We regard a repository as
a DL-related repository if it contains a blob that imports one
of the three DL frameworks: TensorFlow (import name is
tensorflow), Keras (import name is keras), or PyTorch
(import name is torch). This results in 998,514 DL-related
repositories as shown in the Repositories column of Table 2.
The identified DL-related repositories cover a broad spec-
trum of programming languages such as Python, Java, and
Go and spread multiple platforms such as GitHub, Bit-
bucket, and GitLab. In this study, we use the latest version
of WoC, which was labeled as ”T” and collected data up to
February 2021.

Fig. 2b shows the number of quarterly created reposito-
ries importing the three frameworks. Like SO questions, the
numbers of DL-related repositories all increase. Notably,
the number of repositories importing TensorFlow grows
faster than Keras between 2019Q3 and 2020Q1. It may be
because that Keras comes packaged with TensorFlow 2 as
tensorflow.keras [20] so that Keras users have to import
TensorFlow to use Keras since TensorFlow 2. The number
of repositories importing PyTorch keeps rapidly increasing,
in line with the trend of PyTorch questions.

We also use WoC to overcome the time and space
consumption challenges of obtaining these near 1M
repositories’ READMEs. We first retrieve the latest commit
for each repository, then we obtain each repository’s root
folder structure from the tree object pointed by the latest
commit. Finally, we check if “README.md” is contained in
the root folder. If contained, we retrieve its content by its
SHA-1 hash. Using this algorithm, we find 525,451 distinct
repositories containing README.md in WoC ”T” version.

2.2 Data Preprocessing

We preprocess collected SO questions and public repository
READMEs to make the data suitable for LDA analysis.

2.2.1 SO Questions

As in prior work [6], [17], [18], [19], we preprocess SO ques-
tions’ title and body: (1) remove code snippets marked with
<code></code> or <blockquote></blockquote>;
(2) remove HTML tags such as paragraph <p></p> and
URLs <a></a>; (3) remove numbers, punctuation, and
other non-alphabetic characters; (4) remove stop words
such as ’a’ with Mallet’s English stoplist [24]. We also
extend this stoplist with ’tensorflow’, ’keras’, and ’pytorch’;
(5) bigrammodel is built using Gensim5 since bigram model
could improve the quality of text processing as reported by
Tan et al. [25]; (6) Snowball stemmer provided by NLTK6 is
applied to reduce words to their stemmed representations,
for example, “install”, “installation”, and “installing” are all
stemmed to “instal”.

2.2.2 Repository READMEs

README files contain not only information related to the
functionality of a repository which we use to determine the
application type of the repository’s code, but also information
related to installation, requirements, etc. [26], [27]. Since LDA
is sensitive to input data, it’s important to extract relevant
information from README files. To accomplish that, Sharma
et al. [26] extracted sections that are most similar to the reposi-
tory description presented on its homepage. However, such
description is optional and many repositories don’t have one.
We, therefore, conduct a preliminary study to investigate
which section7 of README describes the repository’s func-
tionality without referring to an external resource such as
repository description. To accomplish that, we sample 384
READMEs (the numberwas chosen to be able to obtain a 95%
confidence interval8). The first two authors independently
checked which section contains the description of the
repository’s functionality separately. The Kappa value [28]
between the two authors is 84%, which indicates an almost
perfect agreement. We then held a meeting to resolve the
inconsistencies. We find 8.1% (31) of READMEs to be in non-
English languages. Of the remaining 353 READMEs, 14.7%
(52) don’t contain information about the repository’s func-
tionality, and 84.4% (298) READMEs have descriptive text on
functionality in their first or second sections.

Based on the preliminary study, we exclude non-English
READMEs with langid9 and 429,204 READMEs remain as
shown in the Raw column of Table 2. We then extract the
first two sections of the remaining READMEs and prepro-
cess the extracted text (we also refer to the extracted text as
README in the following). As open source repositories
serve other purposes besides software development [29],
we remove READMEs that contain words explicitly

Fig. 3. A technical dependency record that imported TensorFlow (we
hide author information for the sake of privacy).

2. https://worldofcode.org/
3. https://github.com/woc-hack/tutorial#activity-6-investigating-

technical-dependencies
4. https://github.com/universal-ctags/ctags

5. https://radimrehurek.com/gensim_3.8.3/
6. https://www.nltk.org
7. Following prior work, we define a section as the text in between

two successive headers in a README file. And a header is included in
the section behind it.

8. https://www.surveysystem.com/sscalce.htm
9. https://github.com/saffsd/langid.py
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indicating that the repository is not for software develop-
ment such as “tutorial” and “mooc”. Then we preprocess
the remaining READMEs: remove code snippets enclosed
between ‘; remove URLs, numbers, punctuation, and other
non-alphabetic characters; remove stop words, build
bigram model, and stem words the same as Section 2.2.1.
After removing empty preprocessed READMEs, 227,756
remain as shown in the Preprocessed column of Table 2.

2.3 Topic Modeling

Topic modeling is an unsupervised text-mining technique
that automatically discovers hidden semantic structures
(i.e., topics) in a text corpus. LDA (Latent Dirichlet Alloca-
tion) [30] is an extensively used topic modeling method in
SE research community [15], [17], [18], [19], [26], [31], [32],
[33], [34], [35]. We apply LDA on the preprocessed question
corpus and README corpus, respectively, to identify ques-
tion topics asked by DL developers and application types
DL developers work on. We elaborate on how we fit LDA
models and label LDA topics in the following.

2.3.1 Fitting LDA Models

LDA posits that each document in the corpus is modeled as
a finite mixture over an underlying set of topics and a topic
is modeled as a finite mixture over words in the corpus.
Then it builds a model based on word frequencies and
word co-occurrences to estimate the two distributions —
document-topic distribution and topic-word distribution.
We use Gensim’s Python wrapper for Mallet LDA10, which
implements LDA with Gibbs sampling and is commonly
used in previous work [17], [18], [19]. We set a constant ran-
dom seed for the Gibbs sampler to eliminate the instability
introduced by Gibbs sampling.

LDA requires multiple parameters to work well [35],
[36], [37], [38]: a) topic number K; b) iteration number I in
Gibbs sampling; c) the parameter~a for the prior distribution
of document topics; d) the parameter ~b for the prior distri-
bution of topic words. Earlier work [39] shows that an
asymmetric (i.e., topics have different values) ~a and a sym-
metric (i.e., all words share the same value)~b could increase
the robustness of LDA to variations in the number of topics
and the highly skewed word frequency distributions. We,
therefore, use Mallet’s hyperparameter optimization to
allow the model to learn asymmetric ~a and symmetric ~b
from the corpus11. We set –optimize-interval 10 itera-
tions as suggested by Mallet.

Several heuristics have been proposed to tune LDA
parameters such as Genetic Algorithms (GA) [36], Differen-
tial Evolution (DE) [37], and the iterated f-race procedure
(irace) [35]. Several fitness functions are also proposed to
measure how the LDA model fits the data such as perplex-
ity [40], topic coherence [41], silhouette coefficient [36], and
raw score Rn [37]. However, a recent study [38] reveals no
heuristic and/or fitness function outperforms all the others.
We use the heuristic GA, which searches for the optimal
solution by simulating the natural evolutionary process and

fitness function, topic coherence (Cv) which measures the
understandability of topics generated by LDA, to tune the
remaining two parameters K and I for two reasons: 1) GA
is widely used in SE community to tune LDA parameters
on SO questions and repository READMEs [26], [33], [36],
which are corpus also used in our study to identify question
topics and application types. 2) Cv has been proved to be
highly correlated with human judgment [42] and is widely
used in recent SE studies [6], [18], [19], [43]. The tuning pro-
cess is as follows: GA first generates p different parameter
configurations (called population); for each parameter con-
figuration, it runs LDA and computes the Cv score of the fit-
ted LDA model; according to the p Cv values, GA generates
new configurations and repeats the above step (begin a new
generation); with the generations evolving, better and better
parameter configurations emerge. We use Pyevolve12 imple-
mentation of GA. We set the LDA parameter search space as
K 2 ½5; 50�; I 2 ½500; 2000�. We set both population size and
generation size to 100 to ensure sufficient configurations are
explored following prior work [26], [36].

The optimal parameter configuration for question corpus
and README corpus is K ¼ 27; I ¼ 772 and K ¼ 26; I ¼
891 respectively, and the corresponding Cv values are 0.62
and 0.59. We then assess the stability of the two tuned LDA
models as found by Agrawal et al. [37] that LDA suffers from
order effects [44]. We use the metric, raw scoreRn proposed
by [37] to measure LDA stability. Rn denotes the median
number overlaps of topic size with n words across multiple
LDA runs. We set 1 � n � 9 following prior work. For each
corpus (question corpus and README corpus), we calculate
Ri; i 2 ½1; 9� as follows. We run LDA 10 times with corre-
sponding optimal K and I, each time shuffling the corpus,
then we calculateRi in the 10 runs. We repeat the above pro-
cess 10 times to avoid any sampling bias and choose the
median of the 10 Ri scores. The results are shown in Fig. 4.
Overall, all Ri scores are no less than 50% for each corpus.
Specifically, when reporting topics of up to nine words, in
half cases, all the topics can be found in models generated
using different input orderings, which is considered stable
according to [37]. Therefore, we use the top nine words of
each topic to label topics as described in Section 2.3.2.

2.3.2 Labeling LDA Topics

LDA generates topics represented as a probability distribu-
tion over words but topics’ actual meaning is subject to
interpretation. Often the most probable words for a topic

Fig. 4. Raw score Rn of tuned LDA for question corpus and README
corpus.

10. https://radimrehurek.com/gensim_3.8.3/models/wrappers/
ldamallet.html

11. http://mallet.cs.umass.edu/topics.php 12. https://github.com/BubaVV/Pyevolve
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are often used to assign a subjective label. In our approach,
which is much more effort-intensive but also much more
likely to lead to meaningful labels, we use full documents
(SO questions and README files) to give label names. Spe-
cifically, to label these topics, we follow the general proce-
dure of open card sort, which is frequently used to label
LDA topics in SE research (e.g., [17], [18], [19]). In open card
sort, there are no predefined topic names. Instead, they
come up during the labeling process. We first assign each
document to the topic with the highest probability in its
topic distribution. Then the first two authors, each has three
or four years of DL experience respectively, manually check
each topic’s top nine words and read through 30 randomly
selected documents assigned to that topic. Then, they give a
topic name that best explains the words and documents of
that topic. The process is iterative, where the authors indi-
vidually perform labeling, jointly unify topic names, discuss
conflicts, and refine topic names until they agree on topic
names. An arbitrator, who has five years of DL experience
and is skilled at all the three frameworks, is invited to
review the topic names. The arbitrator is someone external
to the project. He agreed with most (49/53) topic names and
provided better phrasing suggestions for the remaining
four topics. These suggestions are discussed and integrated
into the final topic names. For example, one question topic
was initially labeled as Dataset, after checking its top nine
words and the 30 randomly selected documents assigned to

it, he suggested that Data Load is clearer. After a discussion,
we adopted his suggestion.

3 RQ1: HOW ARE PROBLEMS FACED BY DL
DEVELOPERS DISTRIBUTED OVER SE4DL
STAGES?

3.1 Methods

LDA reveals 27 topics for the 92,830 SO questions shown in
the Topic Name column of Table 3. The number of questions
assigned to each topic is shown in the Count column. We
also calculate the percentage of questions having an
accepted answer for each topic shown in the % acpt column.
We use the seven DL development stages proposed previ-
ously [6] as shown in Table 1. The stages were derived by
analyzing the architecture documentation of several DL
frameworks. To relate question topics to SE4DL stages, we
manually label 1797 randomly sampled questions. Specifi-
cally, we determine the sample size based on the 90% confi-
dence level, resulting in 63 to 67 questions for each question
topic. Then, the first two authors manually label the SE4DL
stages of 1797 questions independently following the defini-
tion of stages as described in Table 1. The Kappa value
between the two authors is 82%, reaching an almost perfect
agreement. The inconsistencies are resolved through discus-
sion. If more than two-thirds of sampled questions of a topic
relate to the same stage, we refer to that topic as a single-

TABLE 3
Stages, Names, Question Count, Percentage of Questions Having an Accepted Answer (% acpt), Adjusted p-Values, Trend, and

Sen’s Slope for 27 Question Topics Sorted by Stages and Question Count

Stages Topic Name Count % acpt Adjusted P-value Trend Sen’s Slope

Preliminary Preparation Installation Error 6556 29.9 1.0 – -9.03e-05
Build Error 3299 30.1 0.00029 # -1.93e-04

Data Preparation Tensor Operation 4163 51.3 1.5e-06 # -2.79e-04
Image Preprocessing 3500 37.7 4.8e-07 " 3.00e-04
Data Type 3376 42.3 1.0 – 7.90e-05
Data Load 3278 35.4 1.0 – -6.46e-05
Data Batch 2623 38.4 1.0 – -2.69e-06

Model Setup Model Load 5225 35.8 2.5e-09 " 4.28e-04
Graph Session 4021 40.5 0.0 # -1.16e-03
Layer Operation 3459 43.9 1.0 – 4.72e-05
Tensor Shape 3455 45.3 0.0032 " 1.54e-04
Probability 3373 37.9 0.0061 # -1.86e-04
LSTM 2426 35.9 0.00040 # -2.55e-04
Embedding 2218 31.3 1.0 – 3.25e-05

Model Training Loss Function 4333 38.4 0.034 " 1.49e-04
Device Use 3963 28.3 2.3e-06 # -2.90e-04

Model Evaluation Evaluation Metrics 3398 35.9 5.2e-10 " 3.41e-04

Model Tuning Training Anomaly 3724 33.3 3.2e-12 " 4.69e-04

Model Prediction Model Conversion 2601 25.7 1.4e-13 " 4.20e-04

Multiple-Stage Topics Code Error 5818 34.4 7.1e-12 " 5.75e-04
API Usage 4473 40.5 9.2e-10 # -4.70e-04
Review 3822 42.0 0.0096 # -1.34e-04
API Misuse 2608 37.0 0.00012 " 1.74e-04
Classification 2198 39.3 1.0 – 7.00e-05
Reinforcement Learning 2150 38.6 0.16 – -9.37e-05
Object Detection API 1976 25.1 0.0012 " 3.59e-04
Error Traceback 794 24.1 0.15 " 5.69e-05

The Adjusted P-value column presents the p-values adjusted by Holm–Bonferroni method [45]. ’"’, ’#’, and ’–’ in the Trend column denote increasing, decreas-
ing, and unchanging trend respectively.
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stage topic primarily relating to the stage. Otherwise, we
refer to the topic as a multiple-stage topic. The threshold we
choose, 2/3, is a commonly used supermajority threshold
for voting in various government and social organizations
[46]. We denote the 27 question topics as t1; t2; :::; t27 respec-
tively and the seven stages as s1; :::; s7 respectively. We
denote ratioðtiÞ as the ratio of questions assigned to ti over
all (92,830) questions and ratioðti; sjÞ as the ratio of ques-
tions relating to sj in the sampled questions of ti, then we
estimate the ratio of questions relating to si as
ratioðsiÞ ¼

P27
k¼1 ratioðtkÞ � ratioðtk; siÞ.

3.2 Results

Fig. 5 shows the occurrence of the 1797 sampled questions
at each SE4DL stage. All the 27 question topics have differ-
ent distributions over stages, and none are exclusive to one
stage as was assumed in prior work [6]. In total 19 question
topics primarily relate to a single SE4DL stage (but occa-
sionally they relate to other stages), and eight topics span
multiple SE4DL stages. Among the 19 single-stage topics,
the primary stages of 13 topics account for over 90% of the
sampled questions. For the remaining 6 topics, after exclud-
ing the questions relating to their primary stages, none of
the rest stages dominate (i.e., account for over 2/3 (i.e.,
supermajority) of) the remaining questions.

The 19 single-stage topics have their primary SE4DL
stages ranging from the first to the last. Installation Error and
Build Error are topics primarily relating to the 1st stage, Pre-
liminary Preparation. The Installation Error topic takes the
most questions (6,556, 7.1%) in all topics. And both topics
have relatively low % acpt with only 29.9% and 30.1% ques-
tions having an accepted answer respectively, indicating
that developers fail to get good answers, possibly suggest-
ing that their presumably novice questions may be poorly
formulated [47]. Overall developers ask �13.3% questions
about the 1st stage. DL frameworks may try to ease the pro-
cedure of setting up environment and help developers focus
on actually using DL frameworks.

Developers ask �23.3% (the second most) questions
about the 2nd stage, Data Preparation with five topics

primarily relating to it: Tensor Operation, Image Preprocessing,
Data Type, Data Load, and Data Batch. This stage usually
involves loading raw data into the program, performing
data preprocessing and augmentation, converting data to
correct format, and finally generating data batches for train-
ing and evaluation. Although DL frameworks provide func-
tionalities to facilitate this procedure, developers face
various problems using these functionalities. For example,
in Question 49034250, a developer asked “Does Keras flow_-
from_directory iterate through every sample in a directory?”
when using Keras’s ImageDataGenerator module. Ten-
sor Operation has the highest % acpt, and is the most com-
mon among the five topics primarily relating to the 2nd
stage. The high % acpt suggests that such questions may be
sufficiently well formulated to result in an acceptable
answer. The relatively high number of such questions sug-
gests that even such a simple topic as tensor operations is
not completely obvious and well understood by DL devel-
opers or that its implementation in the considered frame-
works may be problematic. Such problems are likely to be
alleviated by improving DL frameworks’ documentation.

Developers ask the most (30.7%) questions about the 3rd
stage, Model Setup with seven topics primarily relating to it,
including Graph Session which asks how to operate static
computation graphs, Model Load which discusses how to
correctly load pre-trained models, Layer Operation which
asks how to create and link various neural layers, Probability
which discusses issues on how to manipulate probability
distributions and emerging probabilistic modeling, Tensor
Shape which includes questions about how to correctly fit
tensor shape into layers, and two kinds of neural layers
LSTM and Embedding. Specifically, developers ask the most
about Model Load topic in the seven topics with 5225 (5.6%)
questions. Considering the high frequency of questions on
the topic, better support for loading pre-trained and com-
patible models is urgently needed.

Developers ask �14.4% questions about the 4th stage,
Model Training with two topics, Loss Function and Device
Use, primarily relating to it, indicating that developers
mainly have problems with creating custom loss functions
and configuring computing resources correctly and

Fig. 5. The occurrence of sampled questions at each SE4DL stage for each question topic. The horizontal axis represents question topics and the
vertical axis represents SE4DL stages. Single-stage topics are arranged by the stage and question count. Multiple-stage topics are arranged by
question count.
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efficiently at this stage. The last three stages have only one
topic primarily relating to them respectively. Specifically,
Evaluation Metrics questions on how to evaluate DL models
primarily relate to the 5th stage, Training Anomaly questions
on how to fix abnormal training results primarily relate to
the 6th stage (Model Tuning), andModel Conversion questions
on how to correctly convert trained models for deployment
primarily relate to the last stage (Model Prediction). Overall,
developers ask �6.9%, 6.7%, and 4.8% questions about the
last three stages respectively.

The remaining eight question topics span multiple stages
including five topics relating to framework APIs (Code Error,
API Usage, API Misuse, Object Detection API, and Error Trace-
back), two topics relating to application tasks (Classification
and Reinforcement Learning), and Review.

The five multiple-stage topics relating to framework APIs
reflect the common needs for easier-to-use DL framework
APIs across different stages. Specifically, questions in Code
Error topic spread all stages and occur the most at Model
Setup andModel Training stages. Developers usually provide
code and error messages in such questions, e.g., Keras
’InputLayer object has no attribute ’inbound_nodes’ when convert-
ing to CoreML (Question 48329150), indicating they fail to
debug errors from the errormessages. About half of sampled
APIUsage questions relate toModel Setup stagewhich discuss
how to implement something using a specific API or errors
when using a specific API. For example, developers are fre-
quently confused about the difference between APIs in
torch.nn and torch.nn.functional (e.g., Question
63826328) where they provide the same functionality but in
different ways with the former in class-style and the latter in
function-style. Besides, developers asking API Usage ques-
tions appear to be predominantly novices: among the 67
sampled questions, ten questions occurred when developers
were running tutorial code and nine questions explicitly con-
tain “I am new”-like phrases. This finding indicates that, per-
haps not surprisingly, novices have the greatest challenges in
understanding APIs from the documentation. Questions in
Object Detection API topic discusses the use of TensorFlow
Object Detection API13 and mainly span Model Setup and
Model Evaluation stages. Developers usually draw bounding
boxes (or frames) in images to show the detected objects
according to the coordinates produced by themodel atModel
Evaluation stage. But they face various questions in the proce-
dure such as How to output box coordinates produced from Ten-
sorflowObject Detection API (Question 48284800).

Two topics (Classification and Reinforcement Learning)
spanning multiple stages relate to application tasks. For
Classification topic, developers mainly have problems with
the second to the fifth stage. Developers mainly ask ques-
tions about how to deal with imbalanced data at Data Prepa-
ration and Model Setup stage. At Model Training stage,
developers ask about the use and differences of various loss
functions such as categorical cross entropy and binary cross
entropy. At Model Evaluation stage, developers ask about
how to interpret model output such as How to set different
thresholds for each class in multi-label classification in Question
62439043. Questions of Reinforcement Learning topic mainly

span Preliminary Preparation, Model Setup, and Model Tuning
stages. For Review topic, developers mainly seek practices
and suggestions about the first three stages when applying
DL in practice.

Unlike the finding reported by prior work [6] that devel-
opers ask the most questions about Preliminary Preparation
and Model Training stages, we find that developers ask the
most questions about Data Preparation and Model Setup
stages. Besides, [6] reported no topic in Model Tuning stage,
while we obtain a topic, Training Anomaly, primarily relat-
ing to this stage. Two reasons may attribute to such differ-
ences. One, prior work assigned each topic to a single stage,
while we find that a topic may span multiple stages; Two,
prior data was collected before April 2018 while our data is
collected before March 2021. Over three years some changes
may have taken place in the DL domain with the advent
and improvement of supporting tools and theories. There-
fore, developers’ questions about SE4DL stages may have
changed markedly. We, therefore, further investigate the
time variability of SE4DL needs in RQ2.

Summary for RQ1: None of the 27 question topics
revealed by LDA for SO questions are exclusive to one
stage as was assumed in prior work. In total 19 topics
primarily relate to a single SE4DL stage and eight topics
span multiple stages. The 19 single-stage topics cover all
seven SE4DL stages and the eight multiple-stage topics
are mainly about framework APIs and application tasks.
Overall, developers ask the most about the second (Data
Preparation) and third stages (Model Setup) with 23.3%
and 30.7% questions respectively, in contrast to the for-
mer study that found the first (Preliminary Preparation)
and fourth (Model Training) stages to be the stages with
the most questions [6].

4 RQ2: HOW DO THESE PROBLEMS VARY

OVER TIME?

4.1 Methods

For the 27 SO question topics identified in Section 3.2, we cal-
culate each topic’s relative rate over time where the total
number of questions assigned to each question topic is com-
pared to the total number of DL-related questions for each
month. We then use Mann-Kendall trend test (MK test) [48]
to identify the trend, i.e., the change of relative rate, of the 27
question topics at 0.05 significance level following prior
work [18]. MK test is a non-parametric test used to identify
monotonic trend in a series and is not affected by the length
of series. We also use Theil-Sen’s slope estimator (Sen’s
slope) [48] to measure the magnitude of monotonic trend,
which is often used together with MK test. Since we perform
27 MK tests, we adjust the p-values using the Holm–Bonfer-
roni method [45] to control the family-wise error rate, which
has beenwidely used in SE studies [49], [50], [51], [52].

4.2 Results

The Trend column in Table 3 presents the trend of question
topics identified by MK test based on the adjusted p-values
shown in the Adjusted P-value column. There are three kinds

13. https://github.com/tensorflow/models/tree/master/
research/object_detection
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of trends: increasing, decreasing, and unchanging (neither
decreasing nor increasing at 0.05 significance level). The Sen’s
Slope column in Table 3 shows the measured magnitude of
the trend for each topic. Fig. 6 presents the trend distribution
of question topics. As Fig. 6 shows, topics primarily relating
to the first three stages mainly (11 out of 14) show unchang-
ing or decreasing trends, and the three topics primarily relat-
ing to the last three stages all show increasing trends.
Overall, eleven, eight, and eight question topics increased,
decreased, and didn’t change over time respectively.

Increasing Trend. Seven among eleven increasing topics are
single-stage topics including Image Preprocessing primarily
relating to Data Preparation stage, Tensor Shape and Model
Load atModel Load stage, Loss Function atModel Training stage,
and the rest three primarily relating to the last three stages.
Training Anomaly has the second-highest increasing rate and
has 33.3% questions with an accepted answer. This suggests
that problems encountered during the tuning stage are
becoming relatively more common and are less likely to
receive an answer, possibly because that developers don’t
know what context would be helpful to fix these problems.
Model Load increases at the third-highest rate and developers
ask the secondmost (5,225, 5.6%) questions about it, suggest-
ing that developers’ increasing needs for using pre-trained
models are not well met by existing DL frameworks. Devel-
opers mainly have two kinds of problems about using pre-
trainedmodels. On the one hand, as revealed by [8], develop-
ers often face inconsistent behavior after loading pre-trained
models due to the difference in frameworks, platforms, or
framework versions. On the other hand, developers struggle
with current procedure of loading pre-trained models. For
example, a developer asked How to read keras model weights
without a model because loading a pre-trained model assumes
that its model architecture exists but the developer didn’t
know the architecture. In this case, DL frameworks may pro-
vide more flexible support on loading pre-trained models to
ease the procedure. Model Conversion has the fourth-largest
increase with only 25.7% questions having an accepted
answer (the 3rd lowest), indicating developers are increas-
ingly using or have more issues with model conversion tech-
nique and also have difficulty obtaining solutions on SO. As
revealed in [13], developers’ demand to deploy DL software
to specific platforms for prediction is increasing. Although
some tools such as TFLite, CoreML, and ONNX are rolled
out to facilitate the deployment process, the model conver-
sion support across platforms and frameworks appears to be
incomplete [13], which possibly results in the increasing rela-
tive rate of Model Conversion questions. An abstract of model

format conformed by different frameworks and platforms
may alleviate this problem.

The remaining four topics with increasing rates represent
half of the multiple-stage topics and are all concerned with
framework APIs, including Code Error, API Misuse, Object
Detection API, and Error Traceback. The Code Error topic has
the highest Sen’s slope of 5.75e-04. We find the rapid
increase periods of Code Error questions overlap with the
major release time of TensorFlow. Specifically, a rapid
increase occurred in the first half of 2017 which rises from
4.6% to 6.6% (177 to 502 in absolute count) in terms of half-
yearly ratios. TensorFlow 1.0 was released in February 2017
[53]. The second rapid increase occurred in the second half
of 2019 with the rate increasing from 6.5% to 7.9% (649 to
768 in absolute count). TensorFlow 2.0 was released in Sep-
tember 2019 [54]. According to Tables 1 and 2 in [55], DL
frameworks release frequently with many breaking changes
that affect many projects, which undoubtedly increases the
cost of mastering DL frameworks and results in many ques-
tions related to API errors and misuses. It appears DL
frameworks need to improve their backward compatibility.
The Object Detection API topic has the fifth largest increase
with only 25.1% questions having an accepted answer (the
2nd least), suggesting developers have substantial difficul-
ties in using TensorFlow Object Detection API and also face
difficulties obtaining a solution on SO. Developers may lack
adequate documentation when using these APIs, which
may explain the increase and low % acpt of this topic. For
example, in Question 49148962, a developer asked for Ten-
sorflow object detection config files documentation and com-
plained I could not find any documentation or tutorial on the
options for these config files though. TensorFlow Object Detec-
tion API only provides documentation in the form of mark-
down files in its repository14, which may be harder for
developers to find and use. Therefore, TensorFlow may con-
sider improving the readability and usability of the Object
Detection API documentation.

Decreasing Trend. The decreasing-rate topics include six
single-stage topics and two multiple-stage topics. Notably,
half (3/6) of decreasing-rate single-stage topics primarily
relate to Model Setup stage. These decreasing-rate topics
may indicate that developers’ needs may have been well
met over time. Not surprisingly, substantial efforts have
been devoted to improving DL frameworks. Studies
reported by [7], [8] show that the static computation graph
adopted by TensorFlow 1 was a major root cause of com-
mon programming issues. TensorFlow 2 introduced
dynamic computation graph (i.e., eager execution) as a
default option which may help set up and debug models
[54]. The impact of this improvement is supported by our
analysis as well. For example, Graph Session questions have
the largest decrease.

Unchanging Trend. The topics exhibiting no trend are
mainly (6 of 8) related to the first three stages, with three
topics at the Data Preparation stage. The lack of change for
some of the topics may be not the direct fault of the lack of
improvements in frameworks but may be attributed to the
third-party libraries. The topic that developers ask the most

Fig. 6. Trend of single-stage topics grouped by stages and multiple-stage
topics. The horizontal axis represents SE4DL stages and multiple-stage
topics and the vertical axis represents trend.

14. https://github.com/tensorflow/models/tree/master/
research/object_detection/g3doc
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questions about, Installation Error, is often resulted from
intricate third-party dependencies of DL frameworks. Even
when an error occurs, developers may not be able to diag-
nose the causes from the traces reported by the framework.
For example, some Installation Error questions are caused by
version incompatibilities between dependencies such as the
incompatibility between CUDA v9 and Ubuntu 14.04 (Ques-
tion 54021556). Data Type topic involves conversion and
operation among different data types supported by DL
frameworks and other libraries such as Numpy. But devel-
opers, especially beginners, usually lack a clear understand-
ing of the subtle differences between different data types
and the data type requirements of operators. For instance, a
typical error occurs when developers use the image trans-
formations provided by PyTorch’s torchvision library.
Most transformations accept input of both PIL Image type
and PyTorch Tensor type and return the same type as
input. But some only accept one of the two types, e.g., Nor-
malize. Therefore, developers should convert PyTorch ten-
sors to and from PIL images with ToPILImage and
ToTensor according to the transformation requirements.
Otherwise, an error would occur. For example, a developer
encountered a TypeError because he fed Resize’s output
which is PIL Image type directly to Normalize which
only accepts input of Tensor type. A possible solution is to
improve the compatibility between DL frameworks and
third-party libraries.

If comparing all the topics, questions for the increasing-
rate topics are less likely to receive an accepted answer than
for the unchanging- and decreasing-rate topics indicated by
%acpt. In particular, themean/median%acpt for the increas-
ing-rate topics is 35.3%/35.8%, for decreasing-rate is 38.7%/
38.6%, and for the unchanging-rate is 36.4%/38.4%. On the
other hand, topics with a higher fraction of questions having
an accepted answer tend to have decreasing or unchanging
rate. For example, out of the top ten topics with the highest%
acpt, eight show decreasing or unchanging trends.

Summary for RQ2: Among the 27 question topics, the
relative rates of questions for 11 topics increased, for
eight topics decreased, and for the remaining topics
didn’t change over time. Questions for the 11 trending
up topics are less likely to receive an accepted answer
than questions of the remaining topics. The topics that
have the largest increases (as indicated by Sen’s slope)
are Code Error, Training Anomaly, Model Load, and Model
Conversion, and the topic that decreases the most is Graph
Session. The topic that developers ask the most questions
about, Installation Error hasn’t increased or decreased sig-
nificantly over time.

5 RQ3: HOW DO THESE PROBLEMS VARY OVER

APPLICATION TYPES?

5.1 Methods

As discussed in Section 2.1.2, there are two challenges to
answer RQ3: identifying application types and relating SO
questions to application types. In the following, we elabo-
rate on how we tackle the two challenges.

5.1.1 Identifying Application Types

We identify DL application types by performing LDA on
README files as described in Section 2.3, which results in
26 themes15 (i.e., application types) for 227k repositories.
However, four themes could not be labeled because the
associated README files don’t contain information on the
repository’s functionality. For example, one such theme’s
top nine words are instal python run environ requir packag
depend pip numpi and 30 randomly sampled READMEs from
this theme contain only environment information. We thus
can not infer what the functionality of the software in these
repositories is. The presence of these four functionality-
unrelated themes is consistent with Sharma et al.’s results
where 16 out of 49 themes could not be labeled according to
functionality [26].

The remaining 22 themes do have information reflecting
the functionality of the underlying software and are shown
in Fig. 7. Although we have removed READMEs of some
non-software development repositories depending on cer-
tain words as described in Section 2.2.2, some READMEs of
repositories that are irrelevant to software development
remain in the sample as some keywords may refer to soft-
ware development or other activities. For example,
“learning” can be used to express “learning tutorial”, but
also to express “reinforcement learning”. As a result, we find
two themes that appear to be irrelevant to software develop-
ment, i.e., Learning Tutorial including repositories with vari-
ous code examples, and Competition including repositories
for Kaggle competitions. Most of the remaining 20 themes
have self-explanatory names with a few below that require
more explanations. Other theme includes repositories of DL
in other disciplines such as material design16. Development
Tools and Data Utilities include various packages and scripts
to enhance DL frameworks and prepare data. ML models
repositories implement various simple ML algorithms such
as linear and logistic regressions. The remaining 16 themes,
representing 51.1% (116,362/227,756) repositories, include
specific DL methods like Transfer Learning and application

Fig. 7. Distribution of labeled README themes. RL stands for reinforce-
ment learning and ML stands for machine learning.

15. To avoid confusion with SO question topics, we refer to LDA
topics obtained from the README corpus as “themes.”

16. https://github.com/DesignInformaticsLab/fracture_network
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tasks like Image Recognition. We, therefore, focus our analysis
of application types on these 16 themes and investigate the
question topic distribution for these application types repre-
sented by each of the 16 themes.

5.1.2 Relating SO Questions to Application Types

We apply the LDAmodel fitted on READMEs (LDAr) to the
92,830 SO questions to relate SO questions to application
types. Specifically, LDAr infers the README theme proba-
bility distribution for each SO question, and we relate each
SO question to the README theme that has the highest
probability. Only 24,837 questions (27% of all 92,830 ques-
tions) could be related to the 16 application types, possibly
because DL-related questions on SO do not always contain
sufficient descriptions of the application type context.

To validate the LDA inference performance of each
application type, for each application type, we randomly
select 20 SO questions related to it. Then the first two
authors manually check whether these questions are truly
related to the application type. After that, the two authors
compare their results and resolve the conflict. We measure
the LDA inference performance for an application type with
the ratio of questions that are truly related to it in its 20 sam-
pled questions. Overall, the LDA inference performance is
above 60% for all application types, with the minimum of
65% (only for Sentiment Analysis), the maximum of 95%, and
the average of 81%. We find that application types with
more general words in their top nine words are more likely
to have relatively low LDA inference performance. For
example, only 65% (13 out of 20) questions are correctly
related to the application type, Sentiment Analysis, whose
top nine words are project analysi sentiment final cs notebook
report provid file. In contrast, 95%(19 out of 20) questions are
correctly related to the application type, Object Detection,
whose top nine words are detect object face video recognit imag
project emot frame. It is not surprising to observe such differ-
ences since LDA is based on word frequencies and word co-
occurrences and general words are more likely to lead to
grouping of unrelated questions.

To conclude, each of the 24,837 SO questions is related to
a question topic and an application type. For each applica-
tion type, we thus calculate the distribution of questions
related to it over question topics.

5.2 Results

Each column in Fig. 8 shows the question topic distribution
for an application type. The horizontal axis represents appli-
cation types and the vertical axis represents question topics.
The cell with the darkest color in each column indicates the
most common question topics (i.e., with the highest ratio of
questions) for that application type, which we call primary
question topic. Overall, 12 application types’ primary ques-
tion topics cover 10 unique single-stage topics and the
remaining four application types’ primary question topics
cover three multiple-stage topics. Below we use italic and
sans serif to distinguish between question topics (in italic)
and application types (in sans serif).

As we can observe from the distribution of primary ques-
tion topics, the primary question topics for each application
type are different. Four application types (Image Segmentation,

Medical Diagnosis, Sentiment Analysis, and Game AI) raise the
most common questions related to topic Image Preprocessing,
Data Load, and Game AI, which primarily relate toData Prepa-
ration stage. These four application types are pervasive
in daily life with mature solutions. Specifically, both
Image Segmentation and Medical Diagnosis applications concern
the most about question topic Image Preprocessing. Image seg-
mentation is “the process of assigning a label to every pixel in
an image such that pixels with the same label share certain
characteristics” [56]. Therefore, when performing image seg-
mentation, developers need to ensure that pixel labels and
images align. For example, a developer encountered a prob-
lem with images and labels rotated at different angles due
to improper image preprocessing operations in Question
58846552. In this case, dedicated image preprocessing pack-
ages that help automatically align pixel labels and images
could alleviate developers’ problems with preprocessing
image segmentation datasets. For Medical Diagnosis applica-
tions, developers usually deal with medical images to
perform tasks like pneumonia detection and tumor segmenta-
tion. Medical images often come from different proprietary
systems and may need other knowledge of the clinical
data. Therefore, tools that process various formats of
medical images with clinical knowledge may be beneficial.
Sentiment Analysis mostly concerns Data Load questions sug-
gesting a potential lack of standardways or lack of clear docu-
mentation on how to associate text corpus with sentiment

Fig. 8. Question topic distribution for the 16 application types. The hori-
zontal axis represents application types and the vertical axis represents
question topics. Normalization is done column-wise. We also separate
question topics by stages with blue dashed line. PP, Mtr, ME, MTu, and
MP stand for Preliminary Preparation,Model Training,Model Evaluation,
Model Tuning, andModel Prediction respectively.
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labels. For example, in Question 64986037, a developer failed
to use the code provided in the official tutorial to load a larger
dataset. Therefore, DL frameworks could provide more
examples to show the complex use of dataload-related APIs
in their tutorials.

The application types (Transfer Learning, Time Series

Prediction, Text Generation, and Word Embedding) mostly con-
cern question topics ofModel Load, LSTM, andEmbedding, pri-
marily relating to Model Setup stage. These four application
types concern emerging DL methods. Specifically, Model
Load is the primary question topic of Transfer Learning with
35.7% questions. Transfer learning is an emerging DL
method that applies knowledge gained from solving one
problem to a different but related problem [57] and is an
effective way to speed up training and improve the perfor-
mance of DLmodels, especiallywhen the training data is lim-
ited [58]. As shown in Fig. 7, transfer learning is widely
adopted by DL developers to train models with 4.9% (of
227,756) repositories. Our finding suggests further improve-
ment on current support on loading pre-trained models is
necessary and urgent. Embedding is the primary question
topic of both Text Generation and Word Embedding with 39.4%
and 70.4% questions respectively. Embedding is usually
used to densely represent text data and is widely used in
many natural language processing tasks such as text genera-
tion [59]. As embedding has become pervasive and funda-
mental, many models are proposed to train better
embeddings such as BERT17. But our finding indicates that
developers have problems understanding and implementing
these embeddingmodels in practice.

Only one application type’s primary question topic
primarily relates to Model Training stage, i.e., Image Style

Transfer whose primary question topic is Loss Function with
36.3% questions. It is possibly due to Generative Adversar-
ial Networks (GAN), the method widely used in this appli-
cation type. GAN involves a contest between two sub-
models, a generator model for generating new examples
and a discriminator model for classifying whether gener-
ated examples are real or fake. It generally needs to combine
two loss functions, one for generator and the other for dis-
criminator, which adds complexity in implementing loss
functions, e.g., how to assign weights to these two loss functions
using Keras (Question 54068352). Besides, achieving equilib-
rium between the generator and discriminator also leads
to difficulties tuning GAN, illustrated by 16.6% Training
Anomaly questions. Training Anomaly, which primarily
relates to Model Tuning stage, is the primary question
topic of Image Recognition with 48.5% questions. A possible
explanation is that many novices to DL usually get started
from image recognition tasks such as the well-known
handwritten digit recognition task, resulting in many
questions about how to fix abnormal training results.
Therefore, summarizing common model tuning practices
may be helpful. Finally, Model conversion, which primarily
relates to Model Prediction stage, is the primary question
topic of Deployment APP with 58.6% questions, indicating
that converting trained models to the format supported
by the deployment environment is the biggest challenge

when deploying DL software. As shown in Fig. 7, 4.0%
repositories concern this application type, suggesting the
popularity of deploying DL software and the urgency of
better support for model conversions.

The remaining four application types’ primary question
topics cover three multiple-stage topics. Particularly, Object
Detection API is the primary question topic in questions
related to Object Detection with 78.2% questions. Object
detection is a computer vision task of detecting instances of
objects of a certain class within images or videos [60]. It is
more and more used in many cases such as Tesla’s Autopi-
lot AI [61]. Many tools are proposed to help developers
build object detection models such as TensorFlow Object
Detection API and are widely used by developers. But as
revealed in Section 4.2, developers sometimes suffer from
using the documentation.

Summary for RQ3: We identify 16 application types
related to software development in the 227k repositories.
The most asked question topic varies across application
types, with half primarily relating to the second and
third stages. Specifically, developers ask the most ques-
tions about topics primarily relating to Data Preparation
(2nd) stage for four mature application types such as
Image Segmentation and ask the most questions about
topics primarily relating to Model Setup (3rd) stage for
four application types concerning emerging methods
such as Transfer Learning.

6 IMPLICATIONS

Our results show how SE needs for DL vary across
stages, time, and application types. In the following, we
discuss implications for SE4DL research, practice, and
education.

SE4DL Research & Practice. (i) Reduce the rate of preliminary
preparation problems. DL frameworks have complex depen-
dencies, which makes it difficult to install and build them
successfully, thus unable to proceed any further. Develop-
ers ask the most questions about Installation Error and this
topic is stable over time. Besides, only 29.9% Installation
Error and 30.1% Build Error questions have an accepted
answer. Although docker technology allows developers to
package their code conveniently, it has several limitations.
On the one hand, as revealed by Haque et al. [18], docker
brings new challenges to developers. On the other hand,
current pre-built docker images provided by DL frame-
works usually contain complete functionalities and don’t
support functionality customization. As evidenced by the
Build Error questions, developers sometimes need to cus-
tomize the functionalities of DL frameworks for various rea-
sons, e.g., reducing binary size [62] and adding custom ops
[63]. Therefore, many developers still choose to install and
build frameworks locally. Specifically, only 3.6% (36,140 out
of 998,514) collected repositories contain a ”Dockerfile”.
One possible avenue for further research may be to perform
an in-depth analysis of the influence of docker on reducing
installation and build errors. Moreover, frameworks like
Keras that act as interface of other DL frameworks may add
additional difficulties to the installation. One possible17. https://github.com/google-research/bert
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solution to alleviate such problems is to provide a dedicated
page like TensorFlow [64] and PyTorch [65] to collect com-
mon install and build errors and corresponding solutions.

(ii) Improve the compatibility of DL Framework APIs. The vari-
ety of data and data handling libraries such as Numpy, Pan-
das, and Gym, makes it often necessary for developers to
convert data types between third-party libraries and DL
frameworks. The relative rate of Data Type questions doesn’t
change over time, indicating that the data type compatibility
between DL frameworks and third-party libraries is an ongo-
ing and not-completely-addressed issue. At the same time,
Code Error questions are growing the fastest and their burst of
increases overlap with the major release time of TensorFlow.
This suggests that the backward compatibility of DL frame-
works may need to be improved to mitigate the influence of
breaking changes. Research on tools that would automati-
cally generate reports of howDL framework APIs are used in
practice could be used to generate better test suites for the
frameworks. Such tools could helpDLAPImaintainers better
understand how frequently users use their APIs, thus esti-
mating the impact of introducing anAPI change.

(iii) Provide better support for using pre-trained models. The
increasing rate of Model Load and Model Conversion ques-
tions that dominate Transfer Learning and Deployment APP
applications respectively suggests that better support for
loading and converting trained models to a form where
they can be used for prediction would be beneficial. Model
weights tend to be saved as key-value pairs where the keys
are layer names and the values are layer weights. However,
existing support on loading models appears to be rudimen-
tary. For example, to load saved model weights in PyTorch,
developers need to create an instance of the same model
first, then load pre-trained weights using load_state_-

dictmethod, which is inconvenient and unnecessarily lim-
its the flexibility of loading weights. To make matters even
more complicated, the model formats supported by differ-
ent frameworks and deployment platforms are not easily
convertible as demonstrated by the rapidly increasing rate
of Model Conversion questions. Developers find it hard to get
answers to their questions as well, with only 25.7% Model
Conversion questions having an accepted answer.

(iv) Provide application-type specific tools. Our results show
that different topics dominate different application types
with sometimes not immediately obvious associations.
Application-type specific tools might be able to better sat-
isfy developers’ unique needs in some of these applications.
For example, based on our findings, integrating image pre-
processing packages that automatically align images and
pixel labels for image segmentation applications might be
beneficial.

(v) Design shape correction tools. Tensor Shape topic exhibits
an increasing trend and has the highest % acpt. Such ques-
tions are typically raised by developers who do not
completely understand the meaning of each dimension of
the neural network layer’s input and output. For example,
developers are confused with the input shape of torch.nn.
Conv1d when applying it on text input (e.g., Question
62372938). Since some of the dimension errors occur at the
time of output, a massive amount of computational timemay
be spent before the error manifests itself. Although existing
DL frameworks could print model architecture with each

layer’s output shape such as print(model) in PyTorch and
model.summary() in Keras, they don’t check whether the
input shape satisfies the layer’s requirement. Therefore, on
the one hand, frameworks could provide meaningful infor-
mation about the expected dimension and the mismatch in
the error backtrace. On the other hand, validation tools might
be designed to examine whether the model on developers’
data induces shape errors and provide suggestions to correct
the errors by analyzing the data flow in the model. Though
several work [66], [67] has designed tools to detect shape
errors for TensorFlow, similar tools for Keras and PyTorch
are lacking and could be designed.

(vi) Improve documentation. As shown in our results, many
developers have difficulty understanding and using DL
framework APIs. For instance, API Usage, API Misuse, and
Object Detection API topics account for 9.8% questions in
total, and API Misuse and Object Detection API topics both
show an increasing trend. Hence, the DL framework docu-
mentation should be improved. On the one hand, compari-
sons between similar APIs and best practices of using an
API could be provided in the documentation to guide devel-
opers to efficiently use suitable APIs. On the other hand, as
discussed in Sections 3.2 and 5.2, developers sometimes fail
to learn from official tutorials (e.g., Question 59290830,
64986037), suggesting that the usefulness [68] of relevant
documentation should be improved. For example, rather
than using ready-to-use datasets, use raw data to demon-
strate the usage of data-related APIs. In addition, as
revealed in Section 4.2, TensorFlow Object Detection API
organizes documentation as multiple markdown files,
which causes some findability issues (e.g., Question
49148962). Therefore, the usability [68] of TensorFlow
Object Detection API documentation could be improved.

SE4DL Education. (i) Design teaching materials in a more tar-
geted way. The relationship between question topics and
SE4DL stages and application types may provide a check-
list for SE4DL educators to help them design more tar-
geted teaching materials and tailor the curriculum
towards the specific application type if the course con-
cerns it. They may consider ensuring that topics found in
RQ1 are in their teaching materials. RQ2 reveals that the
questions for the 11 topics that are becoming more fre-
quent had a lower percentage of having an accepted
answer. First, the difficulty of getting an answer may be
due to the difficulty of providing full relevant informa-
tion [47]: a task difficult for newcomers to SO [69]. There-
fore, educators may consider providing targeted training
materials on how to ask questions on SO so that they are
more likely to receive an accepted answer. Sometimes it
may be difficult to provide relevant information even for
experienced SO users for problems such as installation or
mismatch of model formats. Possibly a tool could be writ-
ten that automatically collects the necessary information
so that it can be submitted with the question. Finally, for
some of the topics that developers may not receive suffi-
cient training, more teaching efforts may remedy that.
Answers to RQ3 may be used to target teaching materials
for specific application types and focus on primary pit-
falls developers experience there. For example, a SE4DL
educator may emphasize how to preprocess image data
when teaching the medical diagnosis domain.
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7 LIMITATIONS

Internal Validity concerns the soundness and accuracy of the
methods used to perform our study. Specifically, the man-
ual procedure used to label question topics and README
themes may be subjective. To minimize subjective effects,
two authors labeled separately and resolved inconsistencies
through discussions. Moreover, a third person has
inspected the named question topics and README themes.
The Kappa values of labeling README sections in Sec-
tion 2.2.2 and SE4DL stages in Section 3.1 were both above
0.80, which is considered almost perfect agreement [28],
suggesting high reliability of the procedure. The method
used to identify DL application types relied on considering
the text of the first two sections of README files. README
files have been used to classify repositories previously [26],
[27]. We chose the first two sections to locate relevant infor-
mation from README files based on the findings of our
preliminary study. We discovered that in over 80% of cases
of a random sample, functionality-relevant information was
within the first two sections. For comparison, we also ran
LDA on the entire text of READMEs, but the results were
far worse, only having a coherence score of 0.47. The third
limitation is the accuracy of the estimated question ratios
for SE4DL stages. We estimate the ratios as described in 3.1.
To assess the accuracy of the estimates, we also manually
labeled 383 randomly sampled questions. Our finding indi-
cates that errors in the estimation are within 1%. The fourth
limitation relates to the way how LDA parameters were
selected. To address it, we did parameter tuning using
Mallet’s hyperparameter optimization for ~a and ~b and also
used an approach described in [26], [33], [36], GA, to tuneK
and I. As is widely done in recent research [6], [18], [19], we
used coherence score to evaluate how LDA fit. We also eval-
uate the LDA stability with widely used metric — raw score
Rn. Reusing the LDA model fitted on READMEs to make
inferences on a different corpus (SO questions) may intro-
duce vocabulary incompatibility issues. To minimize the
impact of these potential issues, we use –use-pipe-from

option suggested in Mallet documentation [70] to align
tokens in SO questions with README corpus’s vocabulary
and validate the inference results as described in Section 5.1.

External Validity concerns the threats to generalize our
findings. Similar to previous studies [15], [17], [18], [19], [31],
[32], [33], [34], we use SO questions to identify practical prob-
lems. As a result, we may ignore problems reported in other
platforms besides SO such as GitHub issues. As discussed in
a prior study [6], “GitHub provides more developer perspectives,
while Stack Overflow provides more of a user’s perspective”. In
this study, we aim to investigate problems faced by develop-
ers when developing DL applications (i.e., user’s perspec-
tive). Therefore, we study SO posts instead of GitHub issues.
Considering that developers who use SO appear to vary in
experience and background, and that a search engine query
often links to SO [71], we believe that SO questions should
approximate developers’ practical problems regarding
which they are willing to attempt to crowdsource an answer.
We identify DL-related SO questions based on tags that are
similar to tags used in previous work [10]. We use tags repre-
senting the three most popular DL frameworks (in terms of
GitHub stars). We can not, therefore, extrapolate our results

to other frameworks. However, we carefully make a compar-
ison between the three frameworks under study and four
other frameworks (i.e., Theano, Caffe, MxNet, and CNTK)
which once attracted attention from industry and academia
in Appendix. Compared with the other four frameworks, the
three frameworks selected for this study are actively devel-
oped, have increasing downstream repositories and SO ques-
tions, and cover different DL framework implementations.
We also run LDA on all SO questions related to the seven
frameworks, which identifies the same 27 question topics.
Therefore, we believe the three selected frameworks are rep-
resentative and influential. Some of the questions that discuss
the three frameworks may not have the tags we used for fil-
tering. To capture these untagged questions, future work
may consider applying content-based filtering techniques as
in [18]. We also identify DL-related repositories based on the
three popular DL frameworks. Some of the DL-related repos-
itories may use other frameworks. But the three frameworks
we choose are used in almost one million repositories, so we
believe our dataset represents a significant part of all open
source DL development.

Construct Validity is the degree to which our metrics of
the relative number of questions and proportion of
answered questions measure the relative number of prob-
lems and difficulty of getting answers. For example, even a
stable relative rate for a topic represents increasing number
of questions. The question intensity or relative frequency
may also reflect the changing or growing of the population
of developers. From our perspective, we wanted to demon-
strate the relative importance of a problem, so the exact rea-
son why certain stages, topics, or themes have more
questions is not essential. What matters is that if addressed
through improvement in the frameworks, better training, or
improved tools, it will bring benefits. The reasons why
some questions do not get answers may vary as well. For
example, a question may be harder, or be badly formulated,
or lack context, or be hard to specify the full context (as in
installation problems), or there simply may be no experts to
answer it. As with the number of questions, these reasons
may be important and may require different interventions.
For example, to train developers how to ask questions, how
to determine and provide relevant context, how to incentiv-
ize experts who answer questions better, etc. From the per-
spective of our research, however, unanswered questions
indicate unresolved problems and the lower the percentage
of accepted answers, the bigger that the problem is.

8 RELATED WORK

SE4DL has unique problems that differ from those encoun-
tered in other domains’ software development and has
attracted several empirical studies to characterize SE4DL
needs. Specifically, many studies focus on SE4DL challenges
and faults, but they do not investigate how they vary among
SE4DL stages. The study of Zhang et al. [7] investigated DL
software bugs. The authors manually analyzed 175 Tensor-
Flow program bugs collected from SO and GitHub and
abstracted four symptoms such as Error and Low Effective-
ness and seven root causes such as Incorrect Model Parameter
or Structure and Unaligned Tensor. Islam et al. [16] and Hum-
batova et al. [10] studied more DL frameworks for a more
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comprehensive understanding of DL software bug symp-
toms and root causes. Islam et al. also analyzed fix patterns
and challenges of these bugs in their follow-up work [9].
Zhang et al. [11] studied the program failures of DL jobs
running on DL platforms and found that nearly half of the
failures occur in the interaction with the platform rather
than in the execution of code logic. Zhang et al. [8] manually
inspected 715 DL-related SO questions and identified seven
kinds of questions such as program crash, model migration and
deployment, and implementation. Other empirical studies of
SE4DL focused on the model deployment task at Model Pre-
diction stage. Guo et al. [12] investigated the performance
gap when deploying trained models to mobile devices and
web browsers and found that model deployment suffered
from compatibility and reliability issues. Chen et al. [13]
manually analyzed 769 SO posts and built taxonomies con-
sisting of 72 challenges when deploying DL software to
server/cloud, mobile, and browser. They further analyzed
the symptoms and fix-strategies of deployment faults of
mobile DL apps [14].

Work in [6], [15], [16] investigated SE4DL stages. We sum-
marize the findings of these three papers in Table 4. TheArti-
facts column shows the data source used. The third and
fourth columns show the findings concerning SE4DL stages
and problem trends.N.A.means no findings. Alshangiti et al.
[15] analyzed 684 machine learning (ML) related SO ques-
tions and revealed the stages with the highest percentage of
questions without an accepted answer. Islam et al. [16] manu-
ally labeled the stages of 970 bugs collected from SO ques-
tions andGitHub commits and revealed stages with themost
bugs and the annual trend of bugs. Han et al. [6] applied LDA
on large-scale SO questions and GitHub issues of three DL
frameworks, namely, Tensorflow, PyTorch, and Theano; and
derived a total of 75 topics in the six corpora. The authors
then aggregated LDA topics into 20 topic categories across all
stages and reported the question topic distribution over
stages. They also reported the impact (the averaged probabil-
ity of a topic in the topic probability distribution of all ques-
tions) trend of stages in the six corpora and the impact trend
of particular topics and topic categories.

In comparison to these three studies, our study has made
several advances. In particular, unlike our study, the work
described in [15], [16] was based on a much smaller dataset
and didn’t associate problems with DL stages. The work

described in [6] investigated stages under an improper
assumption that the question topics exclusively belong to a
single stage. We found most topics to occur in most stages.
Furthermore, the authors only presented the trends for only a
few topics. Finally, none of the three studies investigate how
problems faced by developers vary over DL application types.

In this study, we perform topic modeling with LDA on
large-scale SO questions and README files, in order to
reveal the varied and interconnected landscape of DL devel-
opment stages, developer needs, and DL application types.
In particular, we studied how problems faced by DL devel-
opers are distributed over SE4DL stages and vary over time
and application types.

9 CONCLUSION

Software development of DL applications presents unique
problems and is rapidly spreading and evolving. This paper
aims to better understand SE4DL needs by identifying how
the problems faced by DL developers vary over DL devel-
opment stages, time, and application types. Our approach is
to leverage approximately all DL-related SO questions and
public DL software projects. In total, we analyzed 92,830 SO
questions and 227,756 READMEs of repositories related to
DL. We also describe the process we used to obtain the dis-
tribution of SO question topics. It not only helps reproduce
our results, but also supports investigation in the software
development of other domains. This overview approach
analyzed nearly all actual projects and questions, hence can
help better prioritize relevant training, tools creations, and
further research efforts in the domain of concern. We find
the distribution of topics uneven over DL stages, time, and
application types. The most frequent question topics for an
application type or a development stage are often not intui-
tive beforehand. We believe that our detailed description of
the changing landscape of SE4DL needs over DL stages,
time, and application types would help inform new ways to
improve SE4DL.

ACKNOWLEDGMENTS

We would like to thank Zhehao Zhao for his valuable feed-
back. We also sincerely thank the reviewers for their great
suggestions.

TABLE 4
Summary of Related Work on SE4DL Stages

Paper Artifacts Findings about SE4DL Stages Findings about Trend

Alshangiti et al. [15] SO questions The data pre-processing and
manipulation stage and the
model deployment and
environment setup stage are the
most challenging.

N.A.

Islam et al. [16] SO questions and
GitHub commits

The stages with the most bugs
are data preparation, model
training, and model setup.

Structural logic bugs are increasing and data
bugs are decreasing.

Han et al. [6] SO questions and
GitHub issues

Model Training and
Preliminary Preparation are the
most frequently discussed
stages andModel Tuning stage
has not been discussed

The impact trend of stages on TensorFlow and
Theano are relatively flat and on PyTorch
fluctuates intensely; The top 3 LDA topics with
largest increases or decreases are always
different on the three studied DL frameworks.
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