
An Exploratory Study of Deep Learning Supply Chain
Xin Tan

School of Computer Science and Engineering
Beihang University

State Key Laboratory of Software Development
Environment
Beijing, China

xintan@buaa.edu.cn

Kai Gao
School of Software & Microelectronics

Peking University
Beijing, China

gaokai19@pku.edu.cn

Minghui Zhou∗
School of Computer Science, Peking University
Key Laboratory of High Confidence Software

Technologies, Ministry of Education
Beijing, China

zhmh@pku.edu.cn

Li Zhang
School of Computer Science and Engineering

Beihang University
State Key Laboratory of Software Development

Environment
Beijing, China

lily@buaa.edu.cn

ABSTRACT
Deep learning becomes the driving force behind many contempo-
rary technologies and has been successfully applied in many fields.
Through software dependencies, a multi-layer supply chain (SC)
with a deep learning framework as the core and substantial down-
stream projects as the periphery has gradually formed and is con-
stantly developing. However, basic knowledge about the structure
and characteristics of the SC is lacking, which hinders effective sup-
port for its sustainable development. Previous studies on software
SC usually focus on the packages in different registries without pay-
ing attention to the SCs derived from a single project. We present an
empirical study on two deep learning SCs: TensorFlow and PyTorch
SCs. By constructing and analyzing their SCs, we aim to understand
their structure, application domains, and evolutionary factors. We
find that both SCs exhibit a short and sparse hierarchy structure.
Overall, the relative growth of new projects increases month by
month. Projects have a tendency to attract downstream projects
shortly after the release of their packages, later the growth becomes
faster and tends to stabilize. We propose three criteria to identify
vulnerabilities and identify 51 types of packages and 26 types of
projects involved in the two SCs. A comparison reveals their simi-
larities and differences, e.g., TensorFlow SC provides a wealth of
packages in experiment result analysis, while PyTorch SC contains
more specific framework packages. By fitting the GAM model, we
find that the number of dependent packages is significantly nega-
tively associated with the number of downstream projects, but the
relationship with the number of authors is nonlinear. Our findings
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510199

can help further open the “black box” of deep learning SCs and
provide insights for their healthy and sustainable development.

CCS CONCEPTS
• Software and its engineering → Software evolution; Soft-
ware libraries and repositories; Risk management.

KEYWORDS
software supply chain, deep learning, open source, software struc-
ture, software evolution

ACM Reference Format:
Xin Tan, Kai Gao, Minghui Zhou, and Li Zhang. 2022. An Exploratory Study
of Deep Learning Supply Chain. In 44th International Conference on Software
Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3510003.3510199

1 INTRODUCTION
In recent years, deep learning (DL) has gradually become the re-
search hotspot and mainstream direction in the field of artificial
intelligence [26]. DL allows computational models of multiple pro-
cessing layers to learn and represent data mimicking how the brain
perceives and understands multimodal information, thus implicitly
capturing intricate structures of large-scale data [41]. Due to its
high performance, it has been applied in various fields, e.g., com-
puter vision (CV) and natural language processing (NLP), and used
by thousands and millions of people every day [16].

Behind the boom of DL techniques, DL frameworks are spring-
ing up in universities and companies, among which some excellent
DL frameworks also emerged, such as TensorFlow1 and PyTorch2.
Based on these frameworks, developers design their own applica-
tions to handle various tasks and even release relevant software
packages to enrich and support the existing DL ecosystems [13]. In
addition to providing different functions, these DL packages also
act as bridge nodes attracting their own downstream projects and

1https://www.tensorflow.org
2https://pytorch.org

https://doi.org/10.1145/3510003.3510199
https://doi.org/10.1145/3510003.3510199
https://www.tensorflow.org
https://pytorch.org

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Xin Tan and Kai Gao, et al.

gradually form a supply chain (SC) with a DL framework as the
core and substantial downstream projects as the periphery. The SCs
derived from dependent relationships can dynamically reflect the
overall picture of the ecosystem formed from the DL framework.

However, the DL SCs remain “black boxes” due to the large
number of projects and intricate dependencies involved in the SCs,
as well as a lack of effective modeling methods [18, 46]. It makes
many basic problems unclear, e.g., structure, which hinders the
effective support for its long-term development. For example, some
DL enthusiasts noticed that many researchers are shifting from
TensorFlow to PyTorch, which is a bad signal for the TensorFlow
community [23]. To formulate effective countermeasures, it is nec-
essary to quantify the development state of the two DL SCs and
compare their differences. Worse still, several previously prominent
DL frameworks gradually have been deprecated, e.g., caffe2 and
CNTK, so the issue of how to build the ecosystem of an emerging
framework requires urgent solutions [7, 43]. Given the great suc-
cess of DL frameworks such as TensorFlow, investigation on their
SCs can provide references for the development of these emerging
frameworks. Additionally, previous studies of SCs usually only fo-
cus on the packages in different registries, e.g., Npm [15, 17, 44],
which makes the evolution and related factors of sophisticated SCs
derived from a single package as a knowledge gap.

To bridge this knowledge gap and promote the long-term de-
velopment of DL SCs, this study focuses on the two DL SCs that
are derived from two popular DL frameworks: TensorFlow and
PyTorch. Here we give the formal definition of a DL SC. We define
a DL SC as a directed graph 𝐺 =< 𝑉𝑓 𝑟𝑜𝑚,𝑉𝑡𝑜 , 𝐸 > starting from a
root project (i.e., TensorFlow or PyTorch), where 𝑉𝑓 𝑟𝑜𝑚 is a set of
downstream projects, 𝑉𝑡𝑜 is a set of upstream projects imported
by code files of downstream projects, and 𝐸 ⊆ 𝑉𝑓 𝑟𝑜𝑚 × 𝑉𝑡𝑜 is a
set of directed edges representing import relationships. Compared
with the previous studies defining SC as a package dependency net-
work [28], we extend this definition by considering all dependent
projects (not just packages) to depict an overall picture of SC. By
collecting the data from World of Code (WoC) [29] and Libraries.io
dataset3, we build the SCs of TensorFlow and PyTorch. Based on
these two DL SCs, we attempt to investigate the DL SCs from three
aspects: structure, application domains, and evolutionary factors.
We present three research questions and the main findings are as
following.

RQ1: (Structure)What is the structure of the DL SCs, how does
it evolve, and how to identify the vulnerabilities in the structure?
We find that the DL SCs exhibit a short and sparse hierarchy struc-
ture, with only five or six layers, and more than 80% of the projects
are distributed in the second layer. The number of projects in the
SCs shows an overall increasing trend. Projects often receive down-
stream projects shortly after the release of their packages, and then
the growth rate becomes faster and tends to stabilize. We propose
three criteria to evaluate the vulnerabilities of the DL SCs and
indicate their potential risky projects.

RQ2: (Domain Distribution) What domains do the DL SCs
cover, and are the two SCs different?
We find 51 types of packages involved in the two categories: domain
related packages and non-domain related packages, and 26 types

3https://libraries.io/data

of projects covering four categories: application, research, learning,
and software support. A comparison reveals the similarities and
differences between the two SCs, e.g., TensorFlow SC provides a
wealth of packages in experiment result analysis, while PyTorch
SC contains more specific framework packages. Moreover, the dis-
tribution of project types fluctuates over time, e.g., the proportion
of Raspberry Pi based APP is gradually increasing.

RQ3: (Evolutionary Factors) What factors are related to the
number of downstream projects in the DL SCs?
We find that the most critical factor is the number of authors, which
shows a nonlinear relationship with the number of downstream
projects. The number of dependent DL packages displays a liner
negative correlation. However, the number of stars, project age, and
many SCs related factors, e.g., SC name and the level of package do
not show significant relationship.

Overall, our study makes the following contributions:
• A first study on the hierarchical structure of the DL SCs
revealing their structure, application domains, and evolu-
tionary factors.
• Practical insights on the sustainable DL SCs for DL commu-
nities maintainers, DL practitioners, and researchers.
• An approach for constructing SCs and a dataset of the Ten-
sorFlow and PyTorch SCs containing 491,299 projects.

In the remainder of the paper, Section 2 introduces the dataset
and the approach to construct DL SCs. Section 3 to Section 5
present methods and answers to each research questions. Sec-
tion 6 discusses the implications. Section 7 presents threats to
validity. Section 8 presents related work and Section 9 concludes
the paper. A replication package of our analysis is available on
https://github.com/SunflowerPKU/ICSE22_SC_Data.

2 DATASET AND SC CONSTRUCTION
2.1 Data Collection
Wemainly use two sources for composing the dataset. For obtaining
the package reference relationships, we use the latest version of
WoC: version Q: 2019.12. WoC collects almost all the Git projects
on the Internet and provides the API that can efficiently retrieval
technical dependencies [29]. The technical dependencies have been
extracted by parsing the content of all blobs related to several differ-
ent languages and already stored in the specific files. Therefore, it is
easy to obtain a list of commits and projects that imported a certain
package by searching these files. The format of each piece of data
returned as follows: commit;repo;timestamp;author;blob;language;
filename;model1...We only focus on two domains: repo and times-
tamp. We find that there is little data in the last two months (i.e.,
2019.11 and 2019.12) because it takes time for WoC to collect and
build the data [29]. Therefore, we delete the last two months’ data
during analysis.

Libraries.io dataset tracks over 2.7m unique open source pack-
ages, 33m projects and 235m inter dependencies between them. We
downloaded its latest version: January, 2020. We use this dataset to
identify which projects in a layer of the SC have released packages
and the information about these packages to build the SC.

To investigate RQ2 and RQ3, we extract README files and other
attributes of the projects. Because some attributes are not included
in WoC and Libraries.io, we obtain them through GitHub API.

https://libraries.io/data
https://github.com/SunflowerPKU/ICSE22_SC_Data

An Exploratory Study of Deep Learning Supply Chain ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

2.2 SC Construction
The structure of a DL SC is a network with nodes representing
projects and edges representing package reference relationships.
Algorithm 1 shows how we construct a DL SC. We start from a DL
framework, i.e., TensorFlow or PyTorch, and search Libraries.io to
obtain its related package. For many packages, their import names
are different from packages’ names (e.g., PyTorch’s import name is
torch) and such mapping information is unavailable. Therefore, we
manually label the import names of the packages by reading their
tutorials. Then, for each import name, we search WoC to obtain
the downstream projects that import this package to build the
next layer of the DL SC. We repeat this process until the projects
in the last/highest layer do not have new packages released, or
the packages have no downstream projects. The following points
need to be noted. 1) One project may import a certain package
multiple times. For this case, we only retain the first import time
to represent the establishment time of the reference relationship;
2) For a package with multiple versions, its earlier versions may
not import any package in the DL SC, but at time T, it imported.
When we obtain the downstream projects of this package, we only
retain the downstream projects whose import time is later than T. 3)
When we need to analyze the hierarchical structure of SCs, a project
may import the packages at different levels, making it difficult to
determine the level of this project. For this case, we classify it as
a higher-layer project. For example, if a project imports packages
located at both the second layer and the third layer, we consider
this project to be at the forth (3+1) layer.

Algorithm 1: Constructing DL SC
Input: 𝑅𝑖 ; // url of projects on the i-th layer

Output: DL SC
1 initialization: 𝑖 ← 1 ; // start from the lst layer

2 𝐼𝑁𝑖 ← {} ; // import names of the packages released by the

projects on the i-th layer

3 𝑅𝑖 ← {𝑢𝑟𝑙 𝑜 𝑓 𝑇𝑒𝑛𝑠𝑜𝑟𝐹𝑙𝑜𝑤 𝑜𝑟 𝑃𝑦𝑇𝑜𝑟𝑐ℎ};
4 while true do
5 𝐼𝑁𝑖 ← {} ;
6 for 𝑟 ∈ 𝑅𝑖 do
7 search Libraries.io to obtain the released package 𝑝 ;
8 if 𝑝 then
9 manually label the import name of 𝑝 : 𝑖_𝑛𝑝 ;

10 𝐼𝑁𝑖 .insert(𝑖_𝑛𝑝);

11 if 𝐼𝑁𝑖 is null then
12 return ; // no packages are released

13 else
14 𝑖 ← 𝑖 + 1, 𝑅𝑖 ← {} ; // next layer

15 for 𝑖_𝑛𝑝 ∈ 𝐼𝑁𝑖 do
16 search WoC to obtain projects that import 𝑖_𝑛𝑝 : 𝑟 ;
17 𝑅𝑖 .insert(𝑟);

18 if 𝑅𝑖 is null then
19 return ; // no downstream projects exist

3 RQ1: STRUCTURE
3.1 Methodology
Based on Algorithm 1, we build the SCs of TensorFlow and PyTorch.
We depict the structure of two SCs and their evolution characteris-
tics. Considering malicious actions may introduce malicious code
directly in the end software or indirectly through dependent con-
straints [33], we propose three criteria to identify high-risk nodes
by analyzing the SCs structure.

3.2 Results
3.2.1 Structure Characteristics. Table 1 lists the basic information
of two DL SCs. Since the initial release time of TensorFlow is earlier,
the length of the time range for constructing TensorFlow SC is 16
months longer than that of PyTorch. Both TensorFlow and PyTorch
SCs have substantial projects, i.e., 355,392 and 136,507 respectively.
However, these two SCs are short, with only six or five layers,
which indicates that the length of SCs can not grow indefinitely.
In terms of packages, only a few projects have released packages
(#𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠#𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑠 : TensorFlow: 0.29%; PyTorch: 0.51%), which means that
almost all the projects in the DL SCs are use-oriented. Moreover,
one problem seems to be that a significant number of these packages
are not referenced by any project (1 − #𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚

#𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠 :
TensorFlow: 33.92%; PyTorch: 40.03%). From #import relationship,
we can see that the structures of DL SCs are sparse. One possible
reason is that few nodes have the ability to attract downstream
projects, which is already confirmed above: there are few software
packages in the SCs. Another possible reason is that the existing
internal dependencies is simple.

To explore the second conjecture above, we analyze the depen-
dencies of projects at different layers in the SC. As shown in Table 1,
most of the projects (TensorFlow SC: 89.23%; PyTorch SC: 82.43%)
are distributed in the second layer, i.e., directly dependent on Ten-
sorFlow or PyTorch. It means that TensorFlow and PyTorch are
not only the starting points of the two SCs but also the key pack-
ages that contribute most of the reference relationships. Except
for the first layer, the number of projects in each layer decreases
with the increase of the number of layers, which indicates that
with the increase of DL SC layer, it seems more difficult to attract
downstream projects. We can see that for most of layers, instead im-
porting different layers of packages to work together, projects seem
to be more likely to only import packages published by the project
immediately above them except the third layer of PyTorch SC. This
is generally because the package has integrated the functions of
the package it directly depends on. For example, project “Face-
Recognition-iOS-app-on-NBA-players” (third layer) is an IOS APP
that aims to recognize NBA players’ faces.4 Because it is deployed
on the IOS platform, it imports “tfcoreml” (second layer), a package
directly depending on TensorFlow to integrate machine learning
models into IOS APP.5 As for project “LD-Net”(third layer),6 it im-
ports both “torch”(first layer) and “tensorboardX” (second layer).

4https://github.com/liuyinhsiang/Face-Recognition-iOS-app-on-NBA-players
5https://developer.apple.com/documentation/coreml
6https://github.com/gonewithgt/LD-Net

https://github.com/liuyinhsiang/Face-Recognition-iOS-app-on-NBA-players
https://developer.apple.com/documentation/coreml
https://github.com/gonewithgt/LD-Net

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Xin Tan and Kai Gao, et al.

Table 1: Basic Information of the DL SCs

TensorFlow PyTorch

Start Time 2015.11 2017.03
End Time 2019.10 2019.10
#Projects (nodes) 355,392 136,507
#Packages 1,022 697
#Import relationship (edges) 369,201 152,059
#Layers 6 5
#Projects with downstream 614 418

Table 2: Project Dependencies in the DL SC

TensorFLow PyTorch

Project
Layer

Layers of
Dependent
Projects

Count
Project
Layer

Layers of
Dependent
Projects

Count

1 / 1 1 / 1
2 1 317,115 2 1 112,516

3 2 23,323 3 2 8,072
1,2 12,252 1,2 15,255

4

3 1,268

4

3 422
1,3 500 1,3 28
2,3 348 2,3 104
1,2,3 321 1,2,3 81

5

4 211
5

4 24
1,4 3 1,4 1
2,4 3 3,4 3
3,4 34
1,2,4 6
1,3,4 1
2,3,4 1
1,2,3,4 4

6 5 1

The latter only provides visualization during model training and
contributes 48% of the projects in the third layer of PyTorch SC.7

3.2.2 Evolution Characteristics. Figure 1 shows the growth trend
of TensorFlow SC and PyTorch SC. We can see that since the release
of TensorFlow and PyTorch, the numbers of new projects added
each month in their SCs show a growth trend overall. By May 2019,
the number of new projects in TensorFlow and PyTorch SCs both
reached a peak (TensorFlow SC: 16,518 projects per month; PyTorch
SC: 8,836 projects per month). The growth of the software packages
shows a similar trend.

We also analyze the growth trend of different layers of Tensor-
Flow SC and PyTorch SC. For both SCs, the second and third layer
projects appeared shortly (< 4 months) after the DL frameworks
were released, while the fourth and subsequent layer projects did
not appear until a year later. It indicates that for the packages in the
first two layers of the SCs, once they are released, they may quickly
attract their users. For example, just less than a month after the
release of PyTorch, a package that directly relies on torch named
"block" was released and aims to simplify the matrix operations

7https://pypi.org/project/tensorboardX

Figure 1: Number of New Projects/Packages Added in Ten-
sorFlow SC (left) and PyTorch SC (right).

involved in PyTorch.8 After that, "block" has totally attracted 1,809
downstream projects and gradually formed its own SC.

Figure 2 shows the cumulative distributions of the fraction of
time a project in a SC takes to have at least 10%, at least 50%, and
at least 90% of its downstream projects. To facilitate analysis, we
only consider the projects whose downstream projects is greater
than or equal to five and age is greater than or equal to three
months (TensorFlow SC: 549 projects; PyTorch SC: 370 projects).
Specifically, the y-axis shows the fraction of projects that achieved
10%, 50%, and 90% of their downstream projects in a period of time
that does not exceed the fraction of time shown in the x-axis. The
cumulative changes of downstream projects in TensorFlow SC and
PyTorch SC are similar. More than 70% of the projects have 10%
of their downstream projects early, in 20% of their ages after the
initial release (label A). We hypothesize that many of these initial
downstream projects come from early adopters, who start using
novel DL packages quickly after they are out. After this initial
rising of popularity, the growth of half of the projects’ downstream
projects tends to stabilize, e.g., half of the repositories take 40% of
their age to have 50% of their downstream projects (label B); and
half of the projects take about 70% of their age to have 90% of their
downstream projects (label C).

Figure 3 shows the distribution of the fraction of downstream
projects obtained in the first and last month of the packages in the
two SCs. In the first month, the fraction of downstream projects
gained is 5.50%/13.32% (median/mean for TensorFlow SC) and 5.97%
/ 12.05% (median/mean for PyTorch SC). For the last month, the
fraction of downstream projects gained is 11.99% / 16.22% (median
/ mean for TensorFlow SC) and 12.50%/16.27% (median / mean for
PyTorch SC). By applying the Mann-Whitney U test [31], we find
that for both SCs, the distributions are different (p-value < 0.001)
with a medium effect size (TensorFlow SC: 0.27; PyTorch SC: 0.27).
It means that for the packages in DL SCs, the downstream projects
do not have explosive growth in the early stage. Compared to the
early stage, the project accumulation in the later stage is faster,
which is different from the accumulation law of the stars of GitHub
projects [5]. For example, “tvm” is a DL compiler stack for cpu, gpu
and specialized accelerators, which is in the second layer of PyTorch
SC and was released on 2017-07-30.9 During the first three months
after its release, it attracted four downstream projects, and since

8https://github.com/bamos/block
9https://tvm.apache.org/

https://pypi.org/project/tensorboardX
https://github.com/bamos/block
https://tvm.apache.org/

An Exploratory Study of Deep Learning Supply Chain ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

then this number increases to 12 projects per month. It indicates
that the popularity of packages shows a steady and rapid growth.

≥10% of downstream projects ≥50% of downstream projects ≥90% of downstream projects

Pr
ob

. (
Fr

ac
tio

n
of

 ti
m

e
si

nc
e

cr
ea

te
d

≤
f)

Fraction of time since created - f

A

B C

A

B C

Figure 2: Cumulative Distribution of Downstream Projects
in TensorFlow SC (left) and PyTorch SC (right).

TF_SC_First TF_SC_Last PT_SC_First PT_SC_Last
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Fraction of Downstream Projects Obtained in the
First and Last Month (TF: TensorFlow, PT: PyTorch).

3.2.3 Vulnerabilities. Through analyzing the structure of the DL
SCs, we propose three criteria to help indicate possible risks.

1) Most Impactive Projects. The most critical projects have cas-
cading impact on their downstream projects. Only analyze the
number of incoming connections would not be enough to find the
most dependent upon projects. Therefore, we also consider the
transitive dependency when calculating in-degree. As shown in
Figure 4, a substantial number of projects in the SCs do not have
any downstream projects, which means that they have no chance to
impact other projects. We also labelled the top three most impactive
projects in the two DL SCs. We can see that the most impactive
projects are TensorFlow and PyTorch. Besides, some supporting
tools, e.g., "tensorboardX "10 and "picamera"11, are extremely popu-
lar so that they may introduce great threats to the security of the
SCs. Therefore, careful maintenance by developers is needed.

2)Most Vulnerable Projects. The more packages a project depends
on, the more vulnerable it may be [45]. Therefore, we calculate the
out-degree distribution of the projects considering their transitive
dependency. As shown in Figure 5, more than 80% of the projects
only import one DL package, which means that they are relatively
safe. However, there are still a few projects that import dozens
of DL packages. Once any dependent package is attacked, it will
10https://github.com/lanpa/tensorboardX
11https://github.com/waveform80/picamera

tensorflow/tensorflow

lanpa/tensorboardX ; lanpa/tensorboardX
waveform80/picamera

pytorch/pytorch

bamos/block

+
1

Project(Rank)

Figure 4: In-degree (Dependent Upon) Distribution of the
Projects.

be affected. For example, “neuralLOGIC”12 aims to build a knowl-
edge base of DL and totally imports 50 DL packages. An intriguing
note is that the top three most vulnerable packages in the two DL
SCs are the same because some packages are suitable for different
DL ecosystems. It means that distinct SCs are not fully indepen-
dent; rather, they’re developing and evolving together. For example,
“onnxruntime-copy”13 depends on package “onnx-coreml”14 that is
used to convert ONNX models into Apple core ML format with no
specific framework restrictions.

GPC-debug/neuralLOGIC

KevinHexin/onnxruntime-copy
nrre/n

KevinHexin/onnxruntime-copy
GPC-debug/neuralLOGIC

nrre/n

Figure 5: Out-degree Distribution of the Projects.

3) Projects have the Most Chance of being a Single Point of Fail-
ure. Projects may form clusters through inter dependencies. A few
projects may become bridges among these clusters. Therefore, by
identifying the nodes that have high betweenness centrality [42]
but low degree centrality, we can find the projects that are more
likely to be a single point of failure once they are removed [22].
As shown in Figure 6, “gunpower”15 seems to have a more critical
location in the PyTorch SC.

4 RQ2: DOMAIN DISTRIBUTION
4.1 Methodology
We answer this question from two perspectives: packages and
projects. Software packages play a key role in the formation and
evolution of SCs, so analyzing the functions of packages helps to
understand the tool support provided by SCs. Considering many
12https://github.com/GPC-debug/neuralLOGIC
13https://github.com/KevinHexin/onnxruntime-copy
14https://pypi.org/project/onnx-coreml/
15https://pypi.org/project/gunpowder/

https://github.com/lanpa/tensorboardX
https://github.com/waveform80/picamera
https://github.com/GPC-debug/neuralLOGIC
https://github.com/KevinHexin/onnxruntime-copy
https://pypi.org/project/onnx-coreml/
https://pypi.org/project/gunpowder/

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Xin Tan and Kai Gao, et al.

funkey/gunpowder

funkey/gunpowder

tf-coreml/tf-coreml

Figure 6: Degree Centrality and Betweenness Centrality of
the Projects.

(40%) packages are trivial (no users) and analyzing all the packages
is time-consuming, we decided to analyze the packages with no
less than ten downstream projects (TensorFlow SC: 215 packages,
PyTorch SC: 142 packages). We applied thematic analysis on their
descriptions. It involves the following steps [9]: (1) initial reading
of the descriptions, (2) generating the initial codes for each package
description, (3) searching for themes among the proposed codes,
(4) reviewing the themes to find opportunities for merging, and (5)
designing the final themes. Steps (1) to (4) are performed indepen-
dently by the first two authors. After this, a sequence of meetings
is held to resolve conflicts and to assign the final themes (step 5).
The final inter-rater reliability is 93.56%.

The application fields of projects in a SC can help us under-
stand the status of SC evolution. To determine project types, we
examine repository READMEs in the two SCs using Latent Dirich-
let Allocation (LDA), a topic modelling technique widely used in
Software Engineering (SE) research [1, 2, 20, 39]. We collect reposi-
tory READMEs from WoC as following: a) retrieve the latest com-
mit for each repository, b) obtain each repository’s root folder
structure from the tree object from the latest commit, c) check if
“README.md” exists in the root folder structure, d) if contained,
retrieve its content by its SHA-1 hash. Finally, we get 207,676 and
88,884 repository READMEs in TensorFlow SC and PyTorch SC
respectively. We then perform the same data preprocessing steps
on the two README datasets respectively to reduce the noise. We
firstly remove code blocks marked with ‘. We then extract the first
two sections of README as developers typically describe repos-
itory’s functionality in the first or second sections based on our
manual inspection of 383 randomly sampled READMEs (confidence
level: 95%, margin of error: 5%). We also remove URL, numbers,
punctuation and other non-alphabetical characters in the first two
sections. We remove stop words using Long Stopword List provided
by Ranks NL16. Finally, we use Ported Stemmer [36] to stem words.
After removing preprocessed READMEs whose length less than
100 [40], 91,788 and 42,564 preprocessed READMEs remain in Ten-
sorFlow SC and PyTorch SC respectively. We then feed these two
sets of preprocessed READMEs to LDA to identify project types.

LDA models a topic as a word probability distribution and a
document as a topic probability distribution. Then it estimates topic-
word distribution and document-topic distribution based on the
word frequencies and word co-occurrences. The main challenge of

16https://www.ranks.nl/stopwords

applying LDA is to determine some optimal parameters including
a) topic number k; b) iteration number I in estimation step; c)
document-topic density 𝛼 ; d) topic-word density 𝛽 as pointed in
prior work [34]. We then use Genetic Algorithms (GA), which
is widely used to optimize LDA parameters in SE researches [34,
39, 39] to determine the optimal parameters of LDA. GA searches
optimal parameters by simulating the natural evolutionary process.
We use Gensim’s online LDA implementation and Pyevolve’s GA
implementation. For LDA, we set the parameter search space as:
𝑘 ∈ [2, 50], 𝐼 ∈ [20, 2000], 𝛼 ∈ (0, 0.1], 𝛽 ∈ (0, 0.1]. We set all other
parameters as default. For GA, we set both population size and
generation to 100 to ensure sufficient configurations are tested and
all other parameters as default following prior work [34, 39]. The
optimal parameters for LDA on repository READMEs in TensorFlow
SC is 𝑘 = 40, 𝐼 = 1832, 𝛼 = 0.021, 𝛽 = 0.081 and the optimal
parameters for LDA on repository READMEs in PyTorch SC is
𝑘 = 26, 𝐼 = 1546, 𝛼 = 0.002, 𝛽 = 0.007. For each topic, we randomly
selected ten READMEs for manual analysis to help us determine
the meaning of this topic. To make topics easier to understand, we
combine the same topics and conduct high-level abstractions.

4.2 Results
4.2.1 Packages in the DL SCs. Figure 7 and 8 show the packages
distribution in the TensorFlow SC and PyTorch SC respectively,
which are similar overall. We totally find 51 types of packages
in the two DL SCs, covering domain-related packages (DR) and
non-domain related packages (NDR). The non-domain related pack-
ages account for more than half, including framework,17 model,18
wrapper,19 and tutorial, and provide a rich variety of support tools,
including related tools to assist model training, analysis, and deploy-
ment. Domain-related packages cover a wide range of fields, such
as hot areas including CV (computer vision), NLP (natural language
processing), and RL (reinforcement learning), as well as interdisci-
plinary fields, e.g., biology, medicine, geography, and physics, under
which there are two main package types: model and framework. It
indicates that DL has been extended beyond the range of informa-
tion field, not only limited to usage but also to provide service and
support (i.e., packages).

There are also some differences between the two SCs. Firstly,
from the perspective of packages type, PyTorch SC seems to contain
more framework packages in the specific domains, while Tensor-
Flow SC seems to containmore general supporting tools (e.g., Model
Pruning, Encryption, and Interpretability). This differences may
originate from that PyTorch delivers a more flexible environment
and developers need to build every training loop, which is a better
pick for a team that has a deeper understanding of DL concepts
behind commonly used algorithms and develop their own frame-
work [6]. As for TensorFlow, it has a large and well-established
user base and a plethora of tools to help productionize DL, so there
are plenty of outstanding tools. Secondly, from the perspective of

17A framework is an ecosystem of tools and other resources that provide workflows
with high-level APIs, which can help developers to build and deploy models, e.g.,
https://pypi.org/project/delira/.
18A model is a file that has been trained to recognize certain types of patterns, usually
applicable to certain type of tasks, e.g., https://pypi.org/project/keras-transformer/.
19A wrapper aims to provide a different way to use wrapped object, e.g., providing a
simpler interface, or adding some functionality, e.g., https://pypi.org/project/canton/.

https://pypi.org/project/delira/
https://pypi.org/project/keras-transformer/
https://pypi.org/project/canton/

An Exploratory Study of Deep Learning Supply Chain ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

packages proportion, TensorFlow SC provides a wealth of packages
in experiment result analysis, represented by TensorBoard, whereas
the support of PyTorch SC in this aspect is relatively weak. Further,
PyTorch SC seems to have a higher proportion in general Frame-
work, while TensorFlow SC seems to pay more attention to general
wrappers. The reason is similar as mentioned before – PyTorch
seems more flexible and developer-friendly, and TensorFlow feels a
lot more like a library rather than a framework, so the wrappers aim
to make it more simple to use and applicable to different scenarios.
For the domain-related packages, both two DL SCs cover various
fields. Among them, TensorFlow SC provides more packages in
reinforcement learning (RL), which is mainly due to the popularity
of TensorFlow Agnent20 and OpenAI Baselines”21.

Si
m

pl
ifi

ca
t

io
n

O
th

er
s

Log

Visu
ali

za
ti

on

Cloud
Model

Conversion

Model

RL

Model

Framework

NLP

Model

Biology

Model

M
edicine

Audio

M
odel

Physics

Model

Framework

M
odel

Fram
ew

ork

NDR

Too
ls

M
od

el

Tr
ai

ni
ng

Fram
ew

ork

W
rapperTutorial

DR

CV
M

od
el

M
odel

Pa
ra

m
et

er
Fa

irn
es

s
Ba

tch

Acceleration

Exp
eri

ment

Resu
lt

Anal
ysi

s

Deployment Web

Unknown

Wrap
pe

r

Data
 Pr

oc
ess

ing

Data ProcessingFramework

Environment

Wrapper

Data Processing

Multi-task Learning

G
raph D

L
Tim

e Series
M

odel

Geography
Transfer Learning

1 2 3 4

1: Testing
2: Interpretability
3: Model Pruning
4: Encryption

Figure 7: Packages Distribution of TensorFlow SC.

For each type of packages, we count the number of the projects
that import them. Table 3 lists the top 10most popular package types
in the two SCs. For Both SCs, the non-domain related packages
of the DL tools are most popular. Compared with PyTorch SC, the
domain related packages of RL and non-domain related packages
of wrappers in the TensorFlow SC are obviously more popular,
consistent with the abundance of such packages. In the PyTorch
SC, the non-domain related packages of DL framework has a wide
range of downstream projects. For the packages in the hot fields,
such as CV and NLP, their popularity does not show significant
differences in the two DL supply chains.

4.2.2 Projects in the DL SCs. Figures 9 and 10 show the project
types of the TensorFlow SC and the PyTorch SC respectively. We
can see that for both SCs, their projects all cover four fields: re-
search, application, learning, and software support. An obvious
difference is that the TensorFlow SC has far more project types

20https://www.tensorflow.org/agents
21https://github.com/openai/baselines

NDR

Tools

Others

Model

Convers
ion

M
od

el

Tr
ai

ni
ng

Si
m

pl
ifi

ca
t

io
n

Ac
ce

ler
ati

o
n

Othe
rs

Testing

Framework

M
odel

DR
RLFramework

CV
M

od
el

Fram
ew

ork

NLP

Model

Framework

Biology

Model

Audio

Fram
ework

Physics

FrameworkModel

M
edicine

M
odel

Model

Comparison

Deployment Web
Cloud

Visualization
Experiment

Result Analysis
Log

Wrap
per

Data
 Proces

sin
g

Common Functionality

Model
Environment

Framework

Data Processing
Framework
M

odel
G

raph D
L

Fram
ework

M
odel

1 2 3
4

5

1: Automatic Testing
2: Transfer Learning
3: Time Series
4: Signal Processing
5: Multi-task Learning
6: Geography

Tools
Model

Framework
Wrapper

Tutorial

Wrapper

Fa
irn

es
s

6

Figure 8: Packages Distribution of PyTorch SC.

Table 3: Top 10 Most Popular Package Types

TensorFlow SC PyTorch SC
Rank Type Count Type Count

1 NDR, Tools 18,372 NDR, Tools 14,080
2 DR, RL 3,902 NDR, Framework 2,930
3 DR, CV 3,138 DR, CV 2,412
4 DR, NLP 1,437 DR, NLP 821
5 NDR, Wrapper 1,159 DR, Audio 782
6 NDR, Model 829 DR, RL 376
7 NDR, Framework 693 DR, Medicine 336
8 DR, Biology 619 DR, Physics 315
9 DR, Physics 563 NDR, Model 261
10 DR, Medicine 353 DR, Graph DL 242

than that of the PyTorch SC: 23 VS 13. This may be due to the rela-
tively small number of projects in the PyTorch SC.22 For two SCs,
their application categories contain rich types, both including the
primary and important areas of DL: CV, NLP, and RL. TensorFlow
SC also involves the areas such as Self-driving and Robot Control,
which are closely related to the industry. This is because deploy-
ability in production environments is still TensorFlow’s strength
with TensorFlow Serving (Type: Deployment) being the most pop-
ular model server.23 Moreover, Raspberry Pi APP is a noteworthy
type, which has never been mentioned in previous studies [18]. It
refers to the applications based on Raspberry Pi that is a series of
small single-board computers (SBCs) to help people of all ages and
knowledge levels explore the world of programming and comput-
ing.24 This kind of application appears in the SC mainly because
of a package named TensorFlow Lite that enables developers to run

22Note it cannot be assumed that the unidentified types do not exist in the SC, which
may be because their number is small, the LDA algorithm cannot identify.
23https://github.com/tensorflow/serving
24https://www.raspberrypi.org/

https://www.tensorflow.org/agents
https://github.com/openai/baselines
https://github.com/tensorflow/serving
https://www.raspberrypi.org/

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Xin Tan and Kai Gao, et al.

ProjectsProjects

ResearchResearch

ApplicationApplication

LearningLearning

Software SupportSoftware Support
UnknownUnknown

PaperPaper
CNNCNN
GANGAN

CVCV

Price PredictionPrice Prediction

Raspberry Pi APPRaspberry Pi APP

RLRL

Speech ProcessingSpeech Processing

NLPNLP

CompetitionCompetition
TutorialTutorial
Course AssignmentCourse Assignment

DeploymentDeployment
ToolsTools

Image ClassificationImage Classification
Image Style TransferImage Style Transfer
Image GenerationImage Generation
Image RecognitionImage Recognition
Object DetectionObject Detection
Disease DetectionDisease Detection
Self-drivingSelf-driving

Robot ControlRobot Control
Game AIGame AI

Text ClassificationText Classification
Machine TranslationMachine Translation
Sentiment AnalysisSentiment Analysis

Figure 9: Project Types in the TensorFlow SC

ProjectsProjects

ResearchResearch

ApplicationApplication

LearningLearning

Software SupportSoftware Support
UnknownUnknown

PaperPaper
CNNCNN

CVCV

RLRL

NLPNLP

Course AssignmentCourse Assignment

ToolsTools

Image ClassificationImage Classification
Image Style TransferImage Style Transfer
Image Caption GenerationImage Caption Generation
Face GenerationFace Generation
Face RecognitionFace Recognition
Object DetectionObject Detection

Game AIGame AI

Text ClassificationText Classification
Sentiment AnalysisSentiment Analysis

Figure 10: Project Types in the PyTorch SC

DL models quickly on mobile and embedded devices (such as Rasp-
berry Pi) with low latency 25. TensorFlow has a much bigger and
established community behind it, so it is easier to find resources/
tutorials (Type: Course Assignment, Tutorial) to learn TensorFlow.
It is also preferred by more DL competition participants although
it is more difficult to start with, for which TensorFlow’s high-level
API Keras contributes a lot.26

We demonstrate the evolution of the project types distribution in
the two SCs, as shown in Figures 11 and 12. It can be seen that the
distribution of project types fluctuates over time, among which CV
contributes a large proportion – about 40% (30%) of all the projects
in the TensorFlow (PyTorch) SC. It indicates that CV has always
been a hot field in the application of DL technology. One obvious
difference is that the proportion of Research in the PyTorch SC is
much higher than that of the TensorFlow SC: median: 32.3% vs
8.8%. This is because PyTorch is more tightly integrated with the
Python language and is much easier to understand and debug [25].
Therefore, if developers want to create products related to artificial
intelligence, TensorFlow is a good choice, whereas PyTorch is more
suitable for research and building rapid prototypes. Similar to the
packages, there are also more projects about Learning Resources and
Software Support in the TensorFlow SC than the PyTorch SC. The
proportion of Raspberry Pi based APP is gradually increasing, which

25https://www.tensorflow.org/lite/
26https://keras.io

means that smart robots and embedded DL projects are gradually
attracting the attention of more and more researchers.

We also analyze the distribution of project types at different
layers of the SCs (the results are shown in the appendix). Since
the number of projects on the second layer of the SCs accounts for
more than 80% of all the projects, the evolution of projects types
on the second layer is similar to Figures 11 and 12. For subsequent
layers, there are higher proportions of projects difficult to identify
their types through LDA, which may be because a few new types
of projects have appeared as the SCs extend. For example, Maryam,
a project on the fifth layer of the TensorFlow SC, aims to provide a
robust environment to harvest data from open sources and search
engines quickly and thoroughly.27

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20
15

/11
-20

16
/01

20
16

/02
-20

16
/04

20
16

/05
-20

16
/07

20
16

/08
-20

16
/10

20
16

/11
-20

17
/01

20
17

/02
-20

17
/04

20
17

/05
-20

17
/07

20
17

/08
-20

17
/10

20
17

/11
-20

18
/01

20
18

/02
-20

18
/04

20
18

/05
-20

18
/07

20
18

/08
-20

18
/10

20
18

/11
-20

19
/01

20
19

/02
-20

19
/04

20
19

/05
-20

19
/07

20
19

/08
-20

19
/10

CV Learning NLP
Price Prediction Raspberry Pi based Application Reinforcement Learning
Research Software Support Speech Processing

Figure 11: Evolution of the Project Types Distribution in
TensorFlow SC.

0%

10%
20%
30%

40%
50%

60%
70%
80%

90%
100%

20
17

/03
-20

17
/05

20
17

/06
-20

17
/08

20
17

/09
-20

17
/11

20
17

/12
-20

18
/02

20
18

/03
-20

18
/05

20
18

/06
-20

18
/08

20
18

/09
-20

18
/11

20
18

/12
-20

19
/02

20
19

/03
-20

19
/05

20
19

/06
-20

19
/08

20
19

/09
-20

19
/11

CV Learning NLP Reinforcement Learning Research Software Support

Figure 12: Evolution of the Project Types Distribution in Py-
Torch SC.

5 RQ3: EVOLUTIONARY FACTORS
5.1 Methodology
RQ1 suggests that the numbers of the downstream projects of pack-
ages distribute unevenly. Around 30% to 40% of the packages do not
have downstream projects, which not only wastes the energy of
package developers, but also hinders the sustainable development
of SCs. Therefore, we try to understand the factors related to the
popularity of the packages.
27https://github.com/saeeddhqan/Maryam

https://www.tensorflow.org/lite/
https://keras.io
https://github.com/saeeddhqan/Maryam

An Exploratory Study of Deep Learning Supply Chain ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

We hypothesize that package domain is one of the important
factors, so we analyze the manually labelled packages used to an-
swer RQ2 to answer this RQ, i.e., the packages with no less than ten
downstream projects (357 packages). We consider three categories
of factors that may related to the number of downstream projects.
• RelatedProject Feature: #commits; #contributors; age; #stars
• Package Domain: DR / NDR; sub_domain
• SC Feature: SC name (TensorFlow SC / PyTorch SC), No.layer,
#dependencies

Because the relationships between response and predictors are not
assumed to be linear, we fit Generalized additive models (GAM),
which is applicable to analyze nonlinear and non-monotonic re-
lationships between the response variable and explanatory vari-
ables [21]. We use the GAM function provided by the package
“mgcv” in R language [37]. Firstly, because most of the variables
are highly skewed, both response and numeric predictors are log-
transformed. Secondly, we use the variance inflation factor (VIF)
to analyze the multicollinearity of the prediction variables. Since
the VIF of all variables is less than 5, there is no significant mul-
ticollinearity among all the variables [30]. Finally, we build GAM
as Equation 1, where 𝑌 represents the number of downstream
projects, 𝑓𝑖 represents the smooth functions estimated by the model
by maximum likelihood, 𝑋1...5 represent the numeric predictors
(e.g., #commits), 𝑋6...9 are categorical variables (e.g., SC name and
No.layer), and 𝜖 represents intercept. We first include all variables
into the analysis, and then used the backward elimination method
to gradually eliminate the insignificant variables through the 𝑝

value (p < 0.05) [38].

𝑔(𝑌) ∼ 𝑓1 (𝑋1) + ... + 𝑓5 (𝑋5) + 𝑋6 + ... + 𝑋9 + 𝜖 (1)

5.2 Results
The final model has three predictors: domain, #authors, and #depen-
dencies. The deviance explained is 41%, which means the factors
that related to the number of downstream projects are complicate
and our model can explain part of them. However, this model is ac-
ceptable because our aim is to understand the relationships between
the independent variables and dependent variable not to predict
the dependent variable. Tables 4 and 5 show the fitting results. The
Figures of the fitting results of factor smoothing function are shown
in the appendix. All the variables are significant except domain:
NDR. The results indicate that these three predictors are related
with #downstream_projects of the packages. The order of 𝑒𝑑 𝑓 of two
variable smoothing functions is: 𝑠 (#𝑎𝑢𝑡ℎ𝑜𝑟𝑠) > 𝑠 (#𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠),
which means that the influence of #authors is the more critical than
#dependencies. The influences of #authors on #downstream_projects
is nonlinear. When #authors is small, it is negatively related to
#downstream_projects, whereas when #authors reaches a certain de-
gree (> 7 developers), it shows a significantly positive relationship.
This may indicate that for small teams, the collaboration among
team members may reduce the efficiency of developers. The rela-
tionship between #dependencies and #downstream_projects is linear,
and #dependencies is negatively related with #downstream_projects.
Dey et al. [15] obtain the similar finding: packages having fewer
packages as dependencies are likely to see an increase in downloads.
However, the number of stars, age, and many SCs related factors,
e.g., SC name and No.layer do not show significant relationship.

Table 4: Parameter Estimates

Parameter Estimate Std Err. t Pr > |t|

Intercept 3.197 0.244 13.092 <2e-16
domain-related (DR) 0.558 0.262 2.126 0.035
non-domain related (NDR) 0.474 0.263 1.807 0.072

Table 5: Fit Summary for Smoothing Components

Smooth Terms edf Ref.df F p-value

s(#authors) 4.101 4.976 33.23 < 2e-16
s(#dependences) 1.809 2.287 5.80 0.003

6 IMPLICATIONS
Our study has rich implications for DL community maintainers, DL
practitioners, and researchers.

DL Community Maintainers. Our findings reveal the evolu-
tionary structure and risks of DL SCs, which can provide insights
for maintainers to help the healthy and sustainable development of
the DL communities. Through modeling the structure of DL SCs,
we find that it is a short sparse hierarchical structure (RQ1). Making
this structure explicitly visible can help DL community maintainers
understand the scale and status of the DL SCs, which can bring
insights for formulating targeted development strategies, e.g., when
the growth rate suddenly drops, give an early warning. The criteria
such as “most vulnerable projects” can warn the community main-
tainers and project owners which links and nodes are susceptible to
disruptions in order to take precautions to ensure SC security. We
also discovered that the top three most vulnerable projects are the
same in both TensorFlow and PyTorch SCs, implying that collabo-
ration between different DL communities is required and efficient
in order to ensure the safety of the SCs.

For RQ2, we carefully compare the packages and projects in the
TensorFlow SC and PyTorch SC and obtain a series of characteristics
of these two SCs. For example, Raspberry Pi based Application is
only observed in the TensorFlow SC. This difference is partly due
to their superiority, e.g., TensorFlow SC is superior in on-device
inference. The differences we reveal can help maintainers better
understand what they need to optimize to remain competitive. We
believe that the two DL frameworks will constantly impact each
other, mimic their most effective solutions while improving existing
deficiencies. In the near future, the two DL SCs may become much
similar to each other.

For emerging DL frameworks, we explore the SCs of the two
well-known DL frameworks depicting the structure, application
domains, and evolutionary factors, which can serve as examples
to lead their own ecosystems. For example, maintainers can model
their SCs, analyze the evolution, and compare with TensorFlow and
PyTorch SCs, so as to determine their directions.

DL Practitioners. DL practitioners can benefit from our study
from the following two aspects. On the one hand, DL practitioners
can choose the suitable DL framework more easily. TensorFlow
and PyTorch both are open source DL frameworks extensively used
in academic research and commercial code. Therefore, it may be

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Xin Tan and Kai Gao, et al.

difficult for beginners to choose. Our study carefully compare these
two DL SCs, which can help practitioners determine which choice
is best for their projects. Here, we demonstrate several differences
based on the results of RQ2 to help DL practitioners make choices.
1) Ease of use. We find that the PyTorch SC contains many frame-
works and is preferred by researchers, whereas the TensorFlow SC
provides various wrappers. It is mostly because PyTorch provides
a relatively low-level environment that allows more freedom in
writing customized layers, is more tightly integrated with Python,
and is easier to debug, whereas TensorFlow is frequently criticized
for being difficult to understand and use [32]. Fortunately, the com-
munity was aware of this and released TensorFlow 2.0 in Oct. 2019.
2) Deployment. We discover that there are more embedded ap-
plications in the TensorFlow SC, for example, Raspberry Pi-based
applications, which is due to TensorFlow’s capacity to be deployed
on various platform (packages: TensorFlow Lite and TensorFlow Serv-
ing), allowing its users to develop different types of systems and
used in production environments. However, PyTorch Mobile is the
only mobile support in the PyTorch SC. 3) Experiment results
analysis. TensorFlow SC provides a tool called TensorBoard that
can enable practitioners to track metrics, visualize the model graph,
view histograms of weights, biases, or other tensors as they change
over time, and much more. Although there are the integrations of
TensorBoard with PyTorch (i.e., TensorBoardX), it is not supported
natively. 4) Community Support. Figures 7 and 8 show that both
TensorFlow and PyTorch SCs provide abundant supporting tools.
However, from the perspective of production, the TensorFlow com-
munity is much larger and more active, whereas PyTorch is more
suitable for research. As shown in Figures 11 and 12, TensorFlow SC
has more resources in terms of tutorials and competitions because
PyTorch is a relatively newer framework.

On the other hand, our findings can provide guidance for package
developers in the DL SCs. Firstly, the results of RQ1 illustrate the
cumulative characteristics and real-time changes of the number of
the downstream projects of packages, which can be the reference
for the maintainers to understand the application of their packages,
so as to timely analyze the reasons and improve the competitiveness
of the packages. Secondly, the results of RQ2 reveal the distribution
of different types of packages in the two SCs, which can provide
a reference for developers to develop their own packages, e.g.,
avoid developing duplicate packages. Thirdly, the results of RQ3
reveal some factors related to the number of downstream projects
of packages, which sheds light on developing popular packages.
For example, it is best not to rely on too many upstream packages.

Researchers. Researchers can build on our findings and ask
new questions in order to have a deeper understanding of software
SCs and perform relevant research. The method we propose for
constructing DL SC is not confined to the field of DL. As a result, re-
searchers can use this algorithm to construct SCs of other fields and
study their structure, growth, and evolution. In RQ1, considering
transitive dependencies, we put forward three criteria for identify-
ing potential vulnerabilities. Although they look straightforward,
they provide a basis for risk mitigation from SC perspective. Future
work can build on our metrics and combine risk-related factors(e.g.,
project health) to refine these metrics and investigate mechanisms
of risk management. Our research has provided a basic exploration
of the DL SCs, and further researchmight be conducted in the future

based on this foundation. For example, we observe that projects are
more likely to import packages released by the project immediately
above them for most of the layers in the DL SCs. Analyzing the
origins of this phenomenon can help us grasp what software depen-
dence is really about. In RQ2, we find that it is challenging when
we use LDA to identify the types of projects on higher layers (>3),
which might be due to the emergence of a few new types of projects
as the SCs expand. As a result, a manual label may be required to
assist us to comprehend the breadth of the DL SCs. We discover in
RQ3 that the factors affecting the number of downstream projects
are complicate. Future research can look into other critical aspects
that can help us better understand how software SCs develop and
evolve. Besides, future research can also investigate the reasons for
the deprecation of frameworks from the perspective of their SCs.

7 THREATS TO VALIDITY
Internal validity concerns the threats to how we perform our study.
The first threat relates to the method for constructing DL SC. To
obtain the projects in the next layer, we need to known the import
names of the packages in this layer. We obtain this information
through reading the tutorials and source code of the packages. In
order to ensure the correctness of the labels, the first two authors
annotate independently, and then discuss the inconsistent cases
(21/1,719) to obtain a consensus. The second threat relates to the
thematic analysis applied for determining the functions of the pack-
ages (Section 4.1). To mitigate this threat, the initial selection of
themes is performed individually by the first two authors. Then,
we compare our list of codes and themes after this initial proposal
and create a coding guide with definitions and examples for each
identified theme. The coding guide is then used by each author to
independently examine the whole collection of data. The coding
guide is redefined based on feedback from the second round of
analysis, and the data is independently evaluated for the third and
final time. The last threat comes from the LDA algorithm used to
identify the projects’ types (Section 4.1). The choice of parameters is
a potential threat. To minimize this threat, we use GA to tune LDA
parameter with coherence score to measure LDA fit following prior
SE researches [1, 19, 20, 34, 39, 39]. Another threats come from the
process of labelling LDA topics. To minimize the threats, the first
two authors perform open card sort separately and inconsistencies
(6/66) are discussed until reaching an agreement.

External validity concerns the threats to generalize our findings.
When conducting this study, we only focus on the SCs that orig-
inate from the two prominent DL frameworks. We choose them
because DL is presently playing an important role in both academia
and industry, allowing us to obtain timely and valuable results for
practice and research. Most of our findings and methods can also
be generalized to other software SCs. For example, the method
for constructing DL SC and the criteria for identify vulnerabilities
provide a nice starting point for analyzing other software SCs.

8 RELATEDWORK
We discuss the related work from two aspects: 1) characteristics of
dependency network; 2) risk and maintenance of software SC.

Characteristics ofDependencyNetworks.Recent years, soft-
ware dependency network has gradually attracted researchers’ at-
tention. Prior work mostly investigate the packages in different

An Exploratory Study of Deep Learning Supply Chain ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

registries, e.g., Npm and PyPI. A first large-scale analysis of the
Npm ecosystems was conducted by Wittern et al [44]. Through an-
alyzing the topology of popular Npm JavaScript libraries, they find
that Npm packages are largely dependent on a core set of libraries.
German et al. [17] also obtain the similar results by analyzing the
packages in the R ecosystem. Besides, they find that user-submitted
packages is the main reason for the growth of the ecosystem but the
growth process is slow. Based on the analysis of Apache projects,
researchers find that there is a exponential relationship between
the number of projects and the dependencies among them [35].

Dey et al. [15] try to use the information of dependency structure
to predict change of popularity of Npm packages. They find that
the count and downloads of upstream and downstream runtime
dependencies have a strong effect on the change in downloads. Our
RQ3 also aims to investigate the related factors that influence the
popularity of the packages. The difference is that instead of the
number of downloads, we use the number of downstream projects
as an indicator for popularity, which is closer to essence. Moreover,
we consider other important factors, e.g., domain factors. Their
follow-up work [14] studies the patterns of effort contribution and
demand based on the Npm network. They find that users contribute
and demand effort primarily from packages that they depend on
directly with only a tiny fraction of contributions and demand going
to transitive dependencies.

Some studies focus on more than one ecosystem and try to
explore their differences. Decan et al. [10] compare the typologies
of Npm, PyPI, and CRAN and find that different ecosystems have
different properties, e.g., Npm is more interconnected than CRAN.
Therefore, they claim that the findings obtained from one ecosystem
can not always be generalized to other ecosystems. Kikas et al. [24]
analyze the dependency network structure and evolution of the
JavaScript, Ruby, and Rust ecosystems. They also find that there are
significant differences across language ecosystems. However, our
study indicates that, while there are some variances in application
fields, the two DL SCs are similar in their structures.

In one most relevant study [18], the authors conduct a first study
on the dependency networks of DL libraries. They study the project
purposes, application domains, dependency degrees, update behav-
iors of DL projects. A serious problem is that it constructs dependent
network via the “used by” mechanism provided by GitHub.28 This
mechanism makes a large number of downstream projects missed
because it only supports the projects that have defined their depen-
dencies in certain manifest files, e.g., requirements.txt. As a result,
they only identify 46,930 projects in the TensorFlow SC, whereas
we find 355,392 projects. They also do not consider the hierarchical
structure of the SCs. Instead, our study analyzes the real package
reference data and constructs the SCs layer by layer.

Risk andMaintenance of Software SC. There are substantial
studies that focus on the risk of SCs and seek practices for mainte-
nance. Through an interview, Bogart et al. [4] aim to understand
how dependencies in R and Npm maintained. They find that de-
velopers often use ad-hoc mechanisms to negotiate change instead
of existing awareness mechanisms due to information overload.
Bavota et al. [3] investigate the timing of dependencies update and

28https://docs.github.com/en/code-security/supply-chain-security/understanding-
your-software-supply-chain/exploring-the-dependencies-of-a-repository

find that dependencies are updated only if major new features or
bug fixes are released for the dependencies. By analyzing the usage
of dependency version specification, Decan et al. [11] find that
current tools and versioning schemes can introduce resiliency is-
sues to the ecosystem. Cox et al. [8] measure dependency freshness
in 75 different closed source projects and find that projects using
outdated dependencies four times as likely to have security issues
as opposed to projects that are up-to-date.

There are many studies focusing on the vulnerabilities or bugs
in the SC. Decan et al. [12] analyze 400 security reports in the
npm dependency network and investigate how and when these
vulnerabilities are discovered and fixed, and to which extent they
affect other packages in the packaging ecosystem in presence of
dependency constraints. Ma et al. [27] investigate how developers
fix cross-project correlated bugs and reveal the common practices
of developers and the various factors in fixing cross-project bugs.
Unlike the above studies, our study does not focus on the practices
related to vulnerabilities/ bugs fix but focuses on identifying the
high-risk nodes in the SCs to plan ahead.

9 CONCLUSION
Since the release of famous DL frameworks, such as TensorFlow
and PyTorch, they have been widely applied in both academia and
industry. Through dependency, a huge number of DL projects form
a complicated DL SC. Understanding the structure and evolution
of this SC can bring insights for guiding the healthy development
of the DL ecosystem. In this paper, we focus on two DL SCs: Ten-
sorFlow SC and PyTorch SC. Firstly, we build these two SCs and
analyze their structures, evolution, and vulnerabilities. We find that
although the SCs contain hundreds of thousands of projects, there
are only five or six layers. For most of the packages, they often
attract their downstream projects at an early stage, after which
their growth rates become faster and tend to stabilize. We defined
three criteria that can indicate risky projects in the SCs. Secondly,
we investigate and compare the types of packages and projects dis-
tributed in the two SCs. We find that there are 51 types of packages
and 26 types of projects. The similarities and differences between
these two SCs are identified. For example, although TensorFlow
SC offers a wealth of learning resources and software support, and
excels in embedded DL models, PyTorch SC is preferred among
academics due to its ease of use. Finally, we fit the GAM model
to examine the factors related to the popularity of the packages.
We discover that the number of downstream projects is negatively
related to the number of dependent packages, but the relationship
with the number of authors is nonlinear. Our study is the first ex-
ploratory investigation concentrating on the hierarchical SC system
that arose from a single project. Our findings preliminarily open
the “black box” of DL SCs, putting forward practical insights and
allowing for multiple paths of future research.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China Grants 62141209, 61825201, and Self-determined Research
Funds of State Key Laboratory of Software Development Environ-
ment SKLSDE-2022ZX-08.

https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exploring-the-dependencies-of-a-repository
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exploring-the-dependencies-of-a-repository

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Xin Tan and Kai Gao, et al.

REFERENCES
[1] Ahmad Abdellatif, Diego Costa, Khaled Badran, Rabe Abdalkareem, and Emad

Shihab. 2020. Challenges in Chatbot Development: A Study of Stack Overflow
Posts. In MSR ’20: 17th International Conference on Mining Software Repositories,
Seoul, Republic of Korea, 29-30 June, 2020, Sunghun Kim, Georgios Gousios, Sarah
Nadi, and JosephHejderup (Eds.). ACM, 174–185. https://doi.org/10.1145/3379597.
3387472

[2] Mehdi Bagherzadeh and Raffi Khatchadourian. 2019. Going big: a large-scale
study on what big data developers ask. In Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.).
ACM, 432–442. https://doi.org/10.1145/3338906.3338939

[3] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. 2013. The Evolution of Project Inter-dependencies in a
Software Ecosystem: The Case of Apache. In 2013 IEEE International Conference
on Software Maintenance. 280–289. https://doi.org/10.1109/ICSM.2013.39

[4] Christopher Bogart, Christian Kästner, and James Herbsleb. 2015. When It
Breaks, It Breaks: How Ecosystem Developers Reason about the Stability of
Dependencies. In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering Workshop (ASEW). 86–89. https://doi.org/10.1109/ASEW.
2015.21

[5] Hudson Borges, André C. Hora, and M. T. Valente. 2016. Understanding the
Factors That Impact the Popularity of GitHub Repositories. 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME) (2016), 334–344.

[6] Budek, Konrad and Tautkute-Rustecka, Ivona . 2020. PyTorch vs. TensorFlow – a
Detailed Comparison. https://www.tooploox.com/blog/pytorch-vs-tensorflow-
a-detailed-comparison [Online; accessed 27-July-2021].

[7] Caffe2 Community. 2021. Caffe2 and PyTorch join forces to create a Research
+ Production platform PyTorch 1.0. https://caffe2.ai/blog/2018/05/02/Caffe2_
PyTorch_1_0.html [Online; accessed 23-July-2021].

[8] Joel Cox, Eric Bouwers, Marko van Eekelen, and Joost Visser. 2015. Mea-
suring Dependency Freshness in Software Systems. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, Vol. 2. 109–118. https:
//doi.org/10.1109/ICSE.2015.140

[9] Daniela S. Cruzes and Tore Dyba. 2011. Recommended Steps for Thematic
Synthesis in Software Engineering. In 2011 International Symposium on Empirical
Software Engineering and Measurement. 275–284. https://doi.org/10.1109/ESEM.
2011.36

[10] Alexandre Decan, Tom Mens, and Maelick Claes. 2016. On the Topology of
Package Dependency Networks: A Comparison of Three Programming Lan-
guage Ecosystems. In Proccedings of the 10th European Conference on Soft-
ware Architecture Workshops (Copenhagen, Denmark) (ECSAW ’16). Associ-
ation for Computing Machinery, New York, NY, USA, Article 21, 4 pages.
https://doi.org/10.1145/2993412.3003382

[11] Alexandre Decan, TomMens, and Maëlick Claes. 2017. An Empirical Comparison
of Dependency Issues in OSS Packaging Ecosystems. In 2017 IEEE 24th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2–12.

[12] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the Impact of
Security Vulnerabilities in the Npm Package Dependency Network. In Proceedings
of the 15th International Conference on Mining Software Repositories (Gothenburg,
Sweden) (MSR ’18). Association for Computing Machinery, New York, NY, USA,
181–191. https://doi.org/10.1145/3196398.3196401

[13] Li Deng andDong Yu. 2014. Deep learning: methods and applications. Foundations
and trends in signal processing 7, 3–4 (2014), 197–387.

[14] Tapajit Dey, Yuxing Ma, and Audris Mockus. 2019. Patterns of Effort Contribution
and Demand and User Classification Based on Participation Patterns in NPM
Ecosystem (PROMISE’19). Association for Computing Machinery, New York, NY,
USA, 36–45. https://doi.org/10.1145/3345629.3345634

[15] Tapajit Dey and Audris Mockus. 2018. Are Software Dependency Supply Chain
Metrics Useful in Predicting Change of Popularity of NPM Packages?. In Proceed-
ings of the 14th International Conference on Predictive Models and Data Analytics in
Software Engineering (Oulu, Finland) (PROMISE’18). Association for Computing
Machinery, New York, NY, USA, 66–69. https://doi.org/10.1145/3273934.3273942

[16] Xuedan Du, Yinghao Cai, Shuo Wang, and Leijie Zhang. 2016. Overview of Deep
Learning. In 2016 31st Youth Academic Annual Conference of Chinese Association
of Automation (YAC). IEEE, 159–164.

[17] Daniel M. German, Bram Adams, and Ahmed E. Hassan. 2013. The Evolution
of the R Software Ecosystem. In 2013 17th European Conference on Software
Maintenance and Reengineering. 243–252. https://doi.org/10.1109/CSMR.2013.33

[18] Junxiao Han, Shuiguang Deng, David Lo, Chen Zhi, Jianwei Yin, and Xin Xia. 2020.
An Empirical Study of the Dependency Networks of Deep Learning Libraries.
In 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 868–878. https://doi.org/10.1109/ICSME46990.2020.00116

[19] Junxiao Han, Emad Shihab, Zhiyuan Wan, Shuiguang Deng, and Xin Xia. 2020.
What do Programmers Discuss about Deep Learning Frameworks. Empir. Softw.

Eng. 25, 4 (2020), 2694–2747. https://doi.org/10.1007/s10664-020-09819-6
[20] Mubin Ul Haque, Leonardo Horn Iwaya, and Muhammad Ali Babar. 2020. Chal-

lenges in Docker Development: A Large-scale Study Using Stack Overflow. In
ESEM ’20: ACM / IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, Bari, Italy, October 5-7, 2020, Maria Teresa Baldassarre,
Filippo Lanubile, Marcos Kalinowski, and Federica Sarro (Eds.). ACM, 7:1–7:11.
https://doi.org/10.1145/3382494.3410693

[21] Trevor J Hastie and Robert J Tibshirani. 2017. Generalized additive models. Rout-
ledge.

[22] Sarika Jalan and Camellia Sarkar. 2017. Complex Networks: an emerging branch
of science. Physics News 47 (2017), 3–4.

[23] Jeff Hale. 2020. Is PyTorch Catching TensorFlow? https://towardsdatascience.
com/is-pytorch-catching-tensorflow-ca88f9128304 [Online; accessed 27-July-
2021].

[24] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Structure
and Evolution of Package Dependency Networks. In Proceedings of the 14th Inter-
national Conference on Mining Software Repositories (Buenos Aires, Argentina)
(MSR ’17). IEEE Press, 102–112. https://doi.org/10.1109/MSR.2017.55

[25] Kurama, Vihar. 2021. PyTorch vs. TensorFlow: Which Framework Is Best for Your
Deep Learning Project? https://builtin.com/data-science/pytorch-vs-tensorflow
[Online; accessed 27-July-2021].

[26] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learning. nature
521, 7553 (2015), 436–444.

[27] Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yuming Zhou, and Baowen Xu.
2017. How Do Developers Fix Cross-Project Correlated Bugs? A Case Study on
the GitHub Scientific Python Ecosystem. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). 381–392. https://doi.org/10.1109/
ICSE.2017.42

[28] Yuxing Ma. 2018. Constructing Supply Chains in Open Source Software. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Companion
(ICSE-Companion). 458–459.

[29] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
2019. World of Code: An Infrastructure for Mining the Universe of Open Source
VCS Data. In 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). 143–154. https://doi.org/10.1109/MSR.2019.00031

[30] Edward R Mansfield and Billy P Helms. 1982. Detecting multicollinearity. The
American Statistician 36, 3a (1982), 158–160.

[31] Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini
encyclopedia of psychology (2010), 1–1.

[32] Nicolas D. Jimenez. 2021. TensorFlow Sucks. https://nicodjimenez.github.io/
2017/10/08/tensorflow.html [Online; accessed 23-July-2021].

[33] Marc Ohm, Henrik Plate, Arnold Sykosch, andMichael Meier. 2020. Backstabber’s
Knife Collection: A Review of Open Source Software Supply Chain Attacks. CoRR
abs/2005.09535 (2020). arXiv:2005.09535 https://arxiv.org/abs/2005.09535

[34] Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys
Poshyvanyk, and Andrea De Lucia. 2013. How to effectively use topic models
for software engineering tasks? an approach based on genetic algorithms. In
35th International Conference on Software Engineering, ICSE ’13, San Francisco, CA,
USA, May 18-26, 2013, David Notkin, Betty H. C. Cheng, and Klaus Pohl (Eds.).
IEEE Computer Society, 522–531. https://doi.org/10.1109/ICSE.2013.6606598

[35] Sebastiano Panichella. 2014. How the Apache Community Upgrades Dependen-
cies: An Evolutionary Study. Empirical Software Engineering (06 2014).

[36] Martin F Porter. 1980. An algorithm for suffix stripping. Program (1980).
[37] R documentation contributors. 2021. GAM: Generalized Additive Models with

Integrated Smoothness Estimation. https://www.rdocumentation.org/packages/
mgcv/versions/1.8-36/topics/gam [Online; accessed 27-July-2021].

[38] Willi Sauerbrei, Aris Perperoglou,Matthias Schmid,Michal Abrahamowicz, Heiko
Becher, Harald Binder, Daniela Dunkler, Frank E Harrell, Patrick Royston, and
Georg Heinze. 2020. State of the art in selection of variables and functional forms
in multivariable analysis—outstanding issues. Diagnostic and prognostic research
4, 1 (2020), 1–18.

[39] Abhishek Sharma, Ferdian Thung, Pavneet Singh Kochhar, Agus Sulistya, and
David Lo. 2017. Cataloging GitHub Repositories. In Proceedings of the 21st Inter-
national Conference on Evaluation and Assessment in Software Engineering, EASE
2017, Karlskrona, Sweden, June 15-16, 2017, Emilia Mendes, Steve Counsell, and
Kai Petersen (Eds.). ACM, 314–319. https://doi.org/10.1145/3084226.3084287

[40] Christoph Treude and Markus Wagner. 2019. Predicting good configurations for
GitHub and stack overflow topic models. In Proceedings of the 16th International
Conference on Mining Software Repositories, MSR 2019, 26-27 May 2019, Montreal,
Canada, Margaret-Anne D. Storey, Bram Adams, and Sonia Haiduc (Eds.). IEEE /
ACM, 84–95. https://doi.org/10.1109/MSR.2019.00022

[41] Athanasios Voulodimos, Nikolaos Doulamis, George Bebis, and Tania Stathaki.
2018. Recent developments in deep learning for engineering applications.

[42] Wikipedia contributors. 2021. Betweenness centrality — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=Betweenness_
centrality&oldid=1034163048 [Online; accessed 23-July-2021].

[43] Wikipedia contributors. 2021. Microsoft Cognitive Toolkit. https://en.wikipedia.
org/wiki/Microsoft_Cognitive_Toolkit [Online; accessed 23-July-2021].

https://doi.org/10.1145/3379597.3387472
https://doi.org/10.1145/3379597.3387472
https://doi.org/10.1145/3338906.3338939
https://doi.org/10.1109/ICSM.2013.39
https://doi.org/10.1109/ASEW.2015.21
https://doi.org/10.1109/ASEW.2015.21
https://www.tooploox.com/blog/pytorch-vs-tensorflow-a-detailed-comparison
https://www.tooploox.com/blog/pytorch-vs-tensorflow-a-detailed-comparison
https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html
https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html
https://doi.org/10.1109/ICSE.2015.140
https://doi.org/10.1109/ICSE.2015.140
https://doi.org/10.1109/ESEM.2011.36
https://doi.org/10.1109/ESEM.2011.36
https://doi.org/10.1145/2993412.3003382
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1145/3345629.3345634
https://doi.org/10.1145/3273934.3273942
https://doi.org/10.1109/CSMR.2013.33
https://doi.org/10.1109/ICSME46990.2020.00116
https://doi.org/10.1007/s10664-020-09819-6
https://doi.org/10.1145/3382494.3410693
https://towardsdatascience.com/is-pytorch-catching-tensorflow-ca88f9128304
https://towardsdatascience.com/is-pytorch-catching-tensorflow-ca88f9128304
https://doi.org/10.1109/MSR.2017.55
https://builtin.com/data-science/pytorch-vs-tensorflow
https://doi.org/10.1109/ICSE.2017.42
https://doi.org/10.1109/ICSE.2017.42
https://doi.org/10.1109/MSR.2019.00031
https://nicodjimenez.github.io/2017/10/08/tensorflow.html
https://nicodjimenez.github.io/2017/10/08/tensorflow.html
https://arxiv.org/abs/2005.09535
https://arxiv.org/abs/2005.09535
https://doi.org/10.1109/ICSE.2013.6606598
https://www.rdocumentation.org/packages/mgcv/versions/1.8-36/topics/gam
https://www.rdocumentation.org/packages/mgcv/versions/1.8-36/topics/gam
https://doi.org/10.1145/3084226.3084287
https://doi.org/10.1109/MSR.2019.00022
https://en.wikipedia.org/w/index.php?title=Betweenness_centrality&oldid=1034163048
https://en.wikipedia.org/w/index.php?title=Betweenness_centrality&oldid=1034163048
https://en.wikipedia.org/wiki/Microsoft_Cognitive_Toolkit
https://en.wikipedia.org/wiki/Microsoft_Cognitive_Toolkit

An Exploratory Study of Deep Learning Supply Chain ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

[44] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A Look at the
Dynamics of the JavaScript Package Ecosystem. In 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR). 351–361.

[45] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesús
González-Barahona. 2018. An empirical analysis of technical lag in npm package

dependencies. In International Conference on Software Reuse. Springer, 95–110.
[46] Minghui Zhou, Yuxia Zhang, and Xin Tan. 2019. Software digital sociology.

SCIENTIA SINICA Informationis 49, 11 (2019), 1399–1411.

	Abstract
	1 Introduction
	2 Dataset and SC Construction
	2.1 Data Collection
	2.2 SC Construction

	3 RQ1: Structure
	3.1 Methodology
	3.2 Results

	4 RQ2: Domain Distribution
	4.1 Methodology
	4.2 Results

	5 RQ3: Evolutionary Factors
	5.1 Methodology
	5.2 Results

	6 Implications
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

