
Demystifying Software Release Note Issues on GitHub
Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou∗

School of Computer Science and School of Software & Microelectronics, Peking University, Beijing, China
Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing, China

{wujianyu,heh,gaokai19,zhmh}@pku.edu.cn,wenxin.xiao@stu.pku.edu.cn

ABSTRACT
Release notes (RNs) summarize main changes between two consec-
utive software versions and serve as a central source of informa-
tion when users upgrade software. While producing high quality
RNs can be hard and poses a variety of challenges to developers,
a comprehensive empirical understanding on these challenges is
still lacking. In this paper, we bridge this knowledge gap by manu-
ally analyzing 1,731 latest GitHub issues to build a comprehensive
taxonomy of RN issues with four dimensions: Content, Presenta-
tion, Accessibility, and Production. Among these issues, nearly half
(48.47%) of them focus on Production; Content, Accessibility, and
Presentation take 25.61%, 17.65%, and 8.27%, respectively. We find
that: 1) RN producers are more likely to miss information than
to include incorrect information, especially for breaking changes;
2) improper layout may bury important information and confuse
users; 3) many users find RNs inaccessible due to link deterioration,
lack of notification, and obfuscate RN locations; 4) automating and
regulating RN production remains challenging despite the great
needs of RN producers. Our taxonomy not only pictures a roadmap
to improve RN production in practice but also reveals interesting
future research directions for automating RN production.

CCS CONCEPTS
• Software and its engineering→ Documentation.

KEYWORDS
release engineering, release note, empirical study, taxonomy
ACM Reference Format:
Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou. 2022. Demystify-
ing Software Release Note Issues on GitHub. In 30th International Conference
on Program Comprehension (ICPC ’22), May 16–17, 2022, Virtual Event, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3524610.3527919

1 INTRODUCTION
When releasing a new software version, developers often produce a
release note (RN) which summarizes main changes in the software
since its previous release [117]. RNs serve as means of communi-
cation between the software and its users [102]. Consulting RNs
∗Minghui Zhou is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPC ’22, May 16–17, 2022, Virtual Event, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00
https://doi.org/10.1145/3524610.3527919

is considered as an essential best practice when upgrading soft-
ware [10]. Users typically use RNs to comprehend: 1) potentially
beneficial changes, such as bug fixes, enhancements, new features,
to help them decide whether to upgrade to the new release; 2) po-
tentially interrupting changes, along with guidance for migration
or mitigation. Besides, internal developers use RNs to formally doc-
ument development progress and plans for the next release [102].1

For large software projects, the production of RNs is both time-
consuming and error-prone. The survey by Moreno et al. [117]
found that “creating a release note by hand is a difficult and effort-
prone activity that can take up to eight hours”. The tight deadlines in
agile software development may even tempt developers to reduce
effort put into RNs [66]. Consequently, the produced RNs may be
of low quality (bad organization, missing important changes, etc.),
which brings various problems to software users. However, pre-
vious researches [97, 102, 117, 126] mainly focus on categorizing
RN content and automated RN generation, while a systematic un-
derstanding of real RN issues in practice (i.e., how RNs go wrong
or fail to meet users’ expectations) is still lacking. Such an under-
standing can help formulate best practices and reveal important
future research directions for automating and regulating RN produc-
tion. Therefore, to bridge the knowledge gap, we ask the following
research question (RQ):What are the RN issues faced by developers?

To answer this RQ, we collect 1,731 RN-related GitHub issues
from GHArchive [13] and build a comprehensive taxonomy of
these issues using multiple rounds of open coding. The taxonomy is
further validated through semi-structured interviews. The final tax-
onomy consists of four main dimensions: Content (251, 25.61%),
Presentation (81, 8.27%), Accessibility (173, 17.65%), and Pro-
duction (475, 48.47%), that reveals the challenges of using RNs
and therefore the problems of producing RNs. To the best of our
knowledge, this is the first paper that provides such a taxonomy.

Based on our taxonomy, we derive a practitioner-oriented check-
list for RN production, which involves the selection of appropriate
content, organization, and writing style for RNs. We additionally
provide recommendations for regulating RN production and ensur-
ing RN completeness. Finally, we identify open research challenges,
which can benefit the automation of RN production and testing of
RN completeness/correctness in practice. We provide a replication
package at https://doi.org/10.6084/m9.figshare.18777650.

2 BACKGROUND AND RELATEDWORK
In the early years of software development, software products are
often released “once and for all” with no modifications after the
1Note that the term “release note” often refers to the documentation that refine and
summarize change logs. However, in practice many software projects directly use
change logs as their release notes, so some results in our paper refer to both.
Throughout this paper, we use the term “user” to refer to anyone reading RNs or
referring RNs for their tasks. A user can be an internal developer, a downstream
developer, or a software end user.

https://doi.org/10.1145/3524610.3527919
https://doi.org/10.1145/3524610.3527919
https://doi.org/10.6084/m9.figshare.18777650

ICPC ’22, May 16–17, 2022, Virtual Event, USA Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou

initial release. However, successful software inevitably evolves into
new versions. When a new version needs to be released, documen-
tation for explaining changes in this version, i.e., Release Note (RN),
emerges as a natural requirement. Although we cannot precisely
trace the history of the earliest RNs, the term “release note” has at
least been used in the software industry since the 1980s [108].

From the beginning of the 21st century, the movement toward
agile software development advocates “release early, release often”
so that a tight feedback loop between developers and users can be
created [119]. Consequently, the required effort to manage changes
between consecutive software versions has significantly increased.
Then, software projects begin to formulate systematic agendas
for software release management, in which RNs are perhaps the
most important kind of documentation [98]. Nowadays, complex
software systems such as Firefox have to deal with a tremendous
amount (up to thousands) of patches during each release cycle,
which creates a formidable challenge in tracking changes to be in-
cluded in a RN and producing the final RN. For Firefox, the Mozilla
team defines a systematic process, including workflows, conven-
tions, and automated tooling, to support the creation of RNs [12].

Meanwhile, RNs remain an understudied research topic. Early
studies only use RNs as a data source for understanding other soft-
ware maintenance and evolution topics [100, 116, 121, 127]. It is
not until the recent decade do researchers begin to study RNs them-
selves with two main fronts: empirical studies for understanding
RN practices and approaches for automated RN generation.

2.1 Understanding Release Note Practices
Moreno et al. [117] manually analyze 1,000 RNs from 58 industrial
and open source projects. They identify 17 common change types
in RNs, such as fixed bugs, new features, and new code components.
Similarly, Abebe et al. [97] manually analyze 85 RNs from 15 soft-
ware projects and identified six types of information: title, system
overview, resource requirement, installation, addressed issues, and
caveat. Bi et al. [102] study the characteristics of 32,425 RNs from
1,000 GitHub projects. They classify common RN content into eight
topics including issues fixed, new features, system internal changes,
etc. They find that RN content significantly differs across software
in different domains, e.g., for application software and system soft-
ware, new features are most frequently documented. They further
uncover discrepancies between RN producers and users through
interviews and surveys. However, it is still unclear what content
tends to go wrong in RNs, which may have a different distribution.

The nature of RN is also discussed in some work related to soft-
ware documentation. Aghajani et al. [98] perform a survey with
146 developers to investigate what kind of documentation types
are considered as important in software development. They find
that although the majority of developers consider RNs and change
logs as important, their absence are also among their frequently en-
countered issues. Developers also suggest including documentation
such as RNs as mandatory items in the release checklist.

Despite the discrepancies between RN producers and users as
identified by Bi et al. [102], we still lack a comprehensive empirical
understanding of real issues in RN production and usage. To the
best of our knowledge, this is the first paper toward this direction,
and our taxonomy provides a significant amount of new empirical
evidence for improving RN production in practice.

2.2 Automating Release Note Production
Since producing RNs is both important and effort-prone, develop-
ers naturally begin to explore ways to automate this process. For
software projects managed via a version control system (VCS), the
most straightforward way of producing a RN is to aggregate all
changes from the VCS (e.g., aggregating all commit messages from
Git). However, such simple way of automation comes with severe
drawbacks, as noted by the OpenStack documentation:

“Release notes are not meant to be a replacement for git commit
messages. They should focus on the impact for the user and make that
understandable, even for people who do not know the full technical
context for the patch or project” [92].

To facilitate the production of high quality RNs while reducing
manual effort, many open-source projects begin to adopt tools for
automated RN generation, including Semantic Release [95] (∼14k
stars), github-changelog-generator [14] (∼6k stars), Release It [91]
(∼4k stars), Release Drafter [90] (∼2k stars), etc. All tools make
the assumption that every software change should be documented
using predefined templates or labels so that they can generate RNs
based on predefined rules. For example, Semantic Release requires
developers to write commit messages in the format specified by
Angular Commit Message Conventions [4] with eight types of
predefined changes. These tools are generally designed to be easily
extensible and configurable to fit the needs of different projects.
Even if some automation is adopted, it is still common to post edit
the RNs to summarize changes, highlight, or intrigue readers, etc.

To improve the state of practice, researchers have proposed novel
approaches for automated RN generation. Klepper et al. [113] pro-
pose a semi-automated RN generation tool which extracts change
descriptions from issue trackers and organizes them by labels to
fit the need of a specific audience. Moreno et al. [117] propose a
fully automated RN generation tool, ARENA, which integrates both
changes from VCS and rationales for each change from issue track-
ers into RNs with predefined change categories. Nath et al. [118]
propose to generate RNs from commit messages and pull requests
using text summarization and word embedding techniques. Jiang
et al. [111] propose a language-agnostic approach to produce RNs
from pull request text using deep learning.

While several automated approaches have been proposed by
researchers, we are still not aware of any wide industrial adop-
tion, indicating potential discrepancies between research and prac-
tice. Our work complements existing effort on RN automation by
summarizing best automation practices and reveal future research
directions for improving automated tools.

3 METHODOLOGY
3.1 Data Collection
In this study, we choose to analyze GitHub issues, which developers
use to track ideas, provide feedback, report bugs, and initiate dis-
cussions [1]. We favor GitHub issues over Stack Overflow questions
because GitHub issues contain more information such as reports
and discussion among developers and provide concrete examples
of how RNs fail, apart from developers’ opinions.
3.1.1 Mining GitHub. GitHub is one of the most popular social cod-
ing platforms and provides access control and several collaboration
features such as bug tracking, feature requests, task management

Demystifying Software Release Note Issues on GitHub ICPC ’22, May 16–17, 2022, Virtual Event, USA

Table 1: Repository Statistics of the Final Issue Dataset

Median Mean Std. Distribution∗

Age (in Days) 1,483.00 1.676.36 1,058.27 102 103 104

of Commits 1,053.00 7,357.25 36,020.93 102 104 106101 103 105

of Stars 188.00 4,321.06 13,536.23 100 102 104 106101 103 105

of Contributors 28.00 88.23 122.39 100 101 102 103

of Forks 69.50 1,024.87 3,430.94 100 102 104101 103 105

of Issues 53.00 426.57 2,517.74 100 102 104101 103 105

of PRs 5.00 36.22 188.31 100 102 104101 103

of Releases 13.00 60.50 250.59 100 102 104101 103

∗ We increment all values by one to plot the distribution in log-scale.

for every project. It is a commonly used data source for exploring
software issues in previous works [104, 110]. To this end, we use
the GHArchive dataset [13] to collect all GitHub issues that: 1) have
activities (at least one IssueEvent in GHArchive) between January
2021 and June 2021; 2) contain the keyword “release note” in their
titles. We only include the latest GitHub issues (with activities in
2021) because we observe that RN practices are rapidly changing
in open-source communities, and thus data timeliness is vital. For
example, Bi et al. [102] report that developers do not use automated
RN generation tools while the number of automated RN generation
tools are gaining increasing popularity recently (Section 2.2). This
initial selection results in 1,731 issues from 1,019 repositories.
3.1.2 Refining Dataset. Two authors (named as inspectors), both
with over six years of software development experience, further
read all the issues jointly to refine the final dataset. The inspectors
browse through the GitHub issue pages of the all collected issues
together as an initial familiarization of the dataset and exclude the
822 issues that are not related to certain problems in RNs (i.e., False
Positives), including the following cases:

Release Statements (491, 28.37%): The issue is only an official
announcement of a release or a release note.
Non-Informative (137, 7.91%): The issue contains too little infor-
mation (e.g., only a few words in title and description) to be
understood by the inspectors.
Irrelevant (121, 6.99%): The issue happens to have the keyword
“release note” in its title but actually refers to a problem not
related to RNs.
Unreachable (42, 2.43%): The issue is no longer available on
GitHub (e.g., the repository is deleted or made private, the issue
is deleted, etc.).
Non-English (17, 0.98%): The issue contains non-English text and
is not understandable by the inspectors.
Mistake (14, 0.81%): The issue reporter misunderstands the RN
and reports a non-existent problem.
The final dataset for our study consists of 909 issues from 722

repositories. The repository statistics are summarized in Table 3,
where we can observe that most issues come from repositories with
long development history, high popularity, and sufficient develop-
ment activities.2 In fact, given that only software with a sufficiently
large user base may consider writing RNs or have users reporting
issues for RNs, it is natural that almost all of these issues come from
mature software repositories. The size of our dataset is comparable
2The long tail distributions of most metrics are expected and common in mining
software repository datasets [107, 131].

Table 2: Statistics for Each Round of Manual Labeling

Round 1 2 3 4 5∗ Total

Analyzed 273 212 212 212 90 909
Cohen’s Kappa - 0.78 0.86 0.87 - -

Newly Added
- #Dimensions 3 1 0 0 0 4
- #Categories 5 2 0 0 0 7
- #Subcategories 7 4 1 0 0 12
- #Leaf Nodes 48 7 8 2 -3 62
∗ The fifth round samples issues from previous four rounds (Sec-
tion 3.2.3, 3.2.4).

to and even larger than similar software engineering studies that
conduct qualitative manual analysis on text (e.g., studies on Stack
Overflow posts and patch descriptions [99, 101, 103, 124, 130]).

3.2 Analysis Method
For the final 909 RN-related issues, we follow an open coding proce-
dure to inductively create the dimensions, categories, subcategories,
and leaf nodes of our taxonomy in a bottom-upway [120]. Similar to
previous works [103, 110], our procedure of taxonomy construction
consists of four steps: pilot construction, extended construction,
developer interview, and reproducibility verification. The four steps
are integrated with a five-round labeling process and the statistics
for each round of labeling are summarized in Table 2.
3.2.1 Pilot Construction. We randomly sample 30% (273) of the
909 issues for a pilot construction of the taxonomy in the first
round with two stages. The inspectors mentioned in Section 3.1.2
independently analyze the underlying RN problems behind the
sampled issues. In the first stage, the inspectors aim to be familiar
with RNs’ issues. They read and reread titles, descriptions, labels,
and comments of each RN-related issue to understand its problems
and intention. Where necessary, they additionally check relevant
code changes (i.e., pull requests/commits) and release notes that re-
veal the final solution adopted by project developers. In the second
stage, the inspectors assign short phrases as initial codes and record
important information to indicate the problems and needs behind
these issues. If an issue is related to multiple problems and needs,
e.g., the RN misses both new features and breaking changes, it will
be assigned with multiple initial codes. After the initial codes are
generated, the inspectors proceed to group similar codes into cate-
gories, create a hierarchical taxonomy of RNs’ issues, and assign
issues to the taxonomy. We include an additional arbitrator, who
has several publications in top-tier software engineering venues
and more than six years of software development experience, to
mediate, discuss, and resolve any disagreement during taxonomy
construction. They continuously go back and forth between cate-
gories and issues to refine the taxonomy until the inspectors and
the arbitrator finally approve all categories in the taxonomy.
3.2.2 Extended Construction. Based on the initial hierarchical tax-
onomy generated in Section 3.2.1, the inspectors and the arbitrator
iteratively conduct independent labeling, conflict resolution, and
taxonomy refinement in the next three rounds. In each round, two
inspectors first independently label one-third of the remaining is-
sues. When they find issues that cannot be labeled in the current
taxonomy, they add them to a temporary Pending category. Then,
the inspectors and the arbitrator organize a meeting to resolve

ICPC ’22, May 16–17, 2022, Virtual Event, USA Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou

labeling conflicts and determine whether new categories should
be added for issues in the Pending category. After the taxonomy is
refined, they update all previously labeled issues into the refined
taxonomy and proceed to the next round. Saturation is reached in
the third round because we add only new leaf nodes (Table 2). We
finish labeling all the issues in the fourth round. In the three rounds
of extended construction, we use Cohen’s Kappa (^) to measure
inter-rater agreement between two inspectors. The ^ values are
0.78, 0.86, and 0.87, respectively, indicating increasing and high
agreement between inspectors.
3.2.3 Developer Interview. To validate our taxonomy with practi-
tioners, we interview three industry software engineers from differ-
ent large IT companies. They all have rich experience in publishing
RNs with 1.5, 3, and 7 years of experience, respectively.

We opt for semi-structured interviews. Each of our interviews
begins with the question: what issues have you encountered around
RNs in your software development process? The purpose of this
open-ended question is to see if our taxonomy covers the problems
that developers usually encounter during development. They each
describe three, five and two issues they encountered based on their
own development experience. Then, we present our taxonomy and
direct them to specific categories of issues in our taxonomy, which
enables them to recall other four previous issues. All issues are
covered by our taxonomy, indicating that our taxonomy has good
coverage even within a different context (i.e., industry setting).

Then, we ask them to review and provide suggestions about
our taxonomy. They think our taxonomy is clear and informative,
though some leaf nodes can be improved. After discussion, we
decide to merge seven leaf nodes into three leaf node and split one
leaf nodes into two leaf nodes finally. The interview time varied
between 46 minutes and 2 hours. All of interviews are conducted
face to face with two authors (one is the leader and the other one
asks additional questions when appropriate). The reason is that
previous works [109, 110] show that participants talk much more
when more than two interviewers conduct the interviews.
3.2.4 Reproducibility Verification. One problem remaining with
our taxonomy is reproducibility because we intertwine taxonomy
construction with independent labeling. This is hard to avoid be-
cause the taxonomy is too complex to be precisely defined in one or
two rounds. Although we maintain a code book during the process,
it is still unclear whether others can reproduce the taxonomy using
the same code book. Therefore, we invite two interviewees and one
additional Ph.D. candidate to label issues using our code book. Each
of them is assigned 30 different issues and they return their results
after 3 days.3 Compared with our own results, the ^ values are 0.93,
0.89, and 0.86, respectively, which also indicates a high agreement
and thus good reproducibility.

Our final taxonomy includes four dimensions, seven categories,
12 subcategories, and 62 leaf nodes. The entire manual construction
process takes over two months to finish.

4 RESULTS
Figure 1 illustrates the hierarchical taxonomy of RN issues. We
group all these issues into four dimensions:

3We do not assign more because inspecting, comprehending, and labeling issues takes
significant time and energy which they lack to label more.

(1) Content: What information should RNs convey?
(2) Presentation: How should RNs convey information?
(3) Accessibility: How to make RNs easily accessible?
(4) Production: In what way should RNs be produced?

Each dimension is then hierarchically organized into categories
(e.g., Completeness), subcategories (e.g., Missing), and leaf nodes
(optional, e.g., Missing Breaking Changes). Figure 1 also shows the
number of issues and percentages (within dimension) for all dimen-
sions, categories, subcategories, and leaf nodes in the taxonomy. In
the remainder of this section, we will describe our taxonomy with
representative examples.

4.1 Content
In total, 251 issues discuss the Content of RNs, i.e., what informa-
tion should RNs convey. Issues from the Content dimension can
help better understand 1) what common mistakes developers often
make when producing RNs, 2) what typical users would expect
from RNs, and 3) what purposes RNs should serve as one kind of
project documentation. This dimension consists of two categories:
Completeness and Correctness.

4.1.1 Completeness (157, 62.55%). This category of issues concerns
whether RNs contain both sufficient and necessary information
required by users during software upgrades or required by internal
developers for maintenance purposes. It has three subcategories:
Missing, Insufficient, and Unwanted.

Missing (133, 52.99%) subcategory refers to issues stating that
some information perceived important by end users or internal
developers is not included in the RN at all. The most frequently
missed information in RNs includes:

Breaking Changes (31, 12.35%): Such issues are predominant be-
cause end users directly encounter upgrade failures if they are
not notified of breaking changes from reading RNs. However, it
can be difficult for RN producers to correctly locate and high-
light breaking changes in RNs. For example, a developer from
mongoose notes that (the new version) has many errors, and fixing
them is not just changing a function/field name, because function
parameters/semantics have also changed because of the undocu-
mented breaking changes from v6 to v7 [21].
Links (18, 7.17%): In these issues, developers ask for links to
external materials (e.g., related PR/issues/commits, usage guides,
CVEs, etc.) to better understand information conveyed in RNs.
New Features (16, 6.37%): Some implemented new features may
be ignored in RNs, and (other) developers open issues in need of
documenting their contributions.
Dependency/Environment Specification (13, 5.18%):Undocumented
dependency or environment specification may also accidentally
break clients when users upgrade to new versions.
Migration/Usage Instruction (11, 4.38%): Some developers ask for
migration or usage instructions in RNs to help them understand
the impact of breaking changes and upgrade their client code.
Version Information (11, 4.38%): Some developers open issues to
discuss about adding version information in RNs, e.g., release
date, version number & name, checksum, and release status (draft
or final) for easy reference to specific releases.
Attribution (7, 2.79%): Some issues are opened by repository mem-
bers to discuss about missing attribution to certain participants

Demystifying Software Release Note Issues on GitHub ICPC ’22, May 16–17, 2022, Virtual Event, USA

 RN issues

 Content
 (251, 100%)

 Completeness
 (157, 62.55%)

 Missing
 (133, 52.99%)

 Missing Breaking Changes (31, 12.35%)

 Missing Links (18, 7.17%)

 Missing New Features (16, 6.37%)

 Missing Dependency/Environment Specification 
 (13, 5.18%)

 Missing Migration/Usage Instruction (11, 4.38%)

 Missing Version Information (11, 4.38%)

 Missing Attribution (7, 2.79%)

 Missing Known Issues (7, 2.79%)

 Missing Security Changes (4, 1.59%)

 Missing Enhancement (3, 1.20%)

 Missing Visualization (3, 1.20%)

 Missing Dependency/Environment Changes (2, 0.80%)

 Missing Documentation Changes
 (2, 0.80%)

 Missing Misc Changes (2, 0.80%)

 Missing Fixed Bugs (1, 0.40%)

 Missing License Changes (1, 0.40%)

 Missing Modified Files (1, 0.40%)

 Insufficient
 (21, 8.37%)

 Insufficient New Feature Explanation (6, 2.39%)

 Insufficient Breaking Changes Explanation (5, 1.99%)

 Insufficient Migration/Usage Instructions (3, 1.20%)

 Insufficient Fixed Bug Explanation (2, 0.80%)

 Insufficient Configuration Changes (1, 0.40%)

 Insufficient Dependency/Environment Specification 
 (1, 0.40%)

 Insufficient Enhancement (1, 0.40%)

 Insufficient Security Explanation (1, 0.40%)

 Correctness 
 (94, 37.45%)

 Wrong/Broken Links (48, 19.12%)

 Wrong Version Information (14, 5.58%)

 Wrong Dependency/Environment Specification (7, 2.79%)

 Wrong Identifier (7, 2.79%)

 Wrong Code Examples (5, 1.99%)

 Unimplemented Changes (3, 1.20%)

 Wrong Breaking Changes (3, 1.20%)

 Wrong Migration/Usage Instruction (3, 1.20%)

 Wrong Attribution (2, 0.80%)

 Wrong Configuration Explanation (1, 0.40%)

 Wrong Dependency/Environment Changes (1, 0.40%)

 Unwanted
 (3, 1.20%)

 Unwanted Misc Changes (2, 0.80%)

 Unwanted Repository Badges (1, 0.40%)

 Presentation 
 (81, 100%)

 Usability 
 (56, 69.14%)

 Poor Layout
 (31, 38.27%)

 Section Reorganization 
 Required (22, 27.16%)

 Folding Required 
 (6, 7.41%)

 Markup Required
 (3, 3.70%)

 Poor Formatting
 (25, 30.86%)

 Typesetting (18, 22.22%)

 Date Formatting (7, 8.64%)

 Readability
 (25, 30.86%)

 Spelling Errors (14, 17.28%)

 Bad Writing Style (5, 6.17%)

 Grammar Errors (5, 6.17%)

 Multilingual Support Required (1, 1.23%)

 Accessibility
 (173, 100%)

 Limited Exposure (115, 66.47%)

 Wrong/Broken Link to RNs (36, 20.81%)

 Lack Notification (22, 12.72%)

 Production
 (475, 100%)

 Automation
 (217, 45.68%)

 Request for Automation (118, 24.84%)

 Request for Enhancement (37, 7.79%)

 Errors Induced by Automation
 (36, 7.58%)

 Improper Tool Configuration
 (26, 5.47%)

 Planning
 (191, 40.21%)

 When to Produce
 (103, 21.68%)

 Absence (93, 19.58%)

 Deadline Required
 (10, 2.11%)

 Whether to Produce
 (58, 12.21%)

 Where to Produce
 (29, 6.11%)

 Who to Produce
 (1, 0.21%)

 Regulation 
 (67, 14.11%)

 PR/Issue/Commit 
 Management
 (40, 8.42%)

 Inconsistency
 (16, 3.37%)

 With other RNs in 
 Different Places (8, 1.68%)

 With other Documents 
 within Project (6, 1.26%)

 With other Documents in 
 Different Projects

 (2, 0.42%)

 Workflow 
 (11, 2.32%)

 Request for a Workflow
 (9, 1.89%)

 File Naming (1, 0.21%)

 Repository Permission 
 Control (1, 0.21%)

Figure 1: The Taxonomy of Release Note Issues. () Represents Dimensions, () Represents Categories, () Represents
Sub-Categories, and () Represents Leaf Nodes.

(e.g., contributors, funders, commenters, and reviewers, etc.). As
stated by a maintainer of coq, in open source software, it is very
important to give credit [67].
Known Issues (7, 2.79%): Several issues mention that specific
unsolved issues should be included in RNs to alert end users, e.g.,
including a NullPointerException crash and its workaround in
the corresponding RN of NuGet [36].

Other kinds of information may also be reported as missing, though
less frequently, including notification of security changes, enhance-
ments, visualization (additional diagrams or plots), documentation
changes, fixed bugs, license changes, modified files, etc.

Issues in the Insufficient (21, 8.37%) subcategory arise because
certain information related to important changes is not sufficiently
detailed for users to understand. Two kinds of explanations are
most likely to be insufficient in RNs:

New Feature Explanation (6, 2.39%): Developers tend to ask for
more information about unfamiliar new features if they intend
to use them after upgrading. For example, Keras 2.0 renames

samples_per_epoch to steps_per_epoch in fit_generator() but
its RN fails to mention additional changes in parameter seman-
tics, which confuses downstream developers [19].
Breaking Change Explanation (5, 1.99%): Developers also ask for
more clarification about changes that may break downstream
code. We observe a vivid example in numpy where a developer
opens an issue to argue that we should try to improve the release
notes (and probably warnings) for the np.int and other python
alias deprecations [26].

Other insufficiently explained information include: migration/usage
instructions, fixed bugs, configuration changes, dependency/envi-
ronment specification, enhancements, and security.

Interestingly, three issues care about Unwanted information
in RNs, but they are likely to be only occasional. Two issues state
that only critical/developer impacting changes should go in release
notes instead of listing all miscellaneous changes [28], while the
other issue [44] mentions that repository badges should not occur
in release notes.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou

4.1.2 Correctness (94, 37.45%). This category means that informa-
tion described in RNs conveys inaccurate information.

Contrary to our intuition, the majority is Wrong/Broken Links
(48, 19.12%), which refers to cases where links in RNs cannot be
opened or direct to an incorrect page. Most links should point to
other kinds of documentation, e.g., user guide, for the elaboration
of changes in RNs; others are expected to point to related PR/issue/-
commit, project main branch, the homepage of other projects, RNs
of sibling projects, files for download, etc. These links are supposed
to supplement information, but they tend to deteriorate over time,
which causes poor reading experience for RN readers.

Moreover, 14 issues are related to Wrong Version Information
(14, 5.58%), including version number/name, version date, check-
sum, and most of which are caused by copy-pasting from previous
RNs [22, 51, 75]. Other kinds of change description that can go
wrong include identifier, dependency/environment specification,
code examples, breaking changes, migration/usage instructions,
unimplemented changes,4 attribution, dependency/environment
changes, explanation of configuration, etc.

Summary for Content:

Nearly two-thirds (62.55%) of issues within this dimension
concerns Completeness, while only about one-third (37.45%)
concerns Correctness. Developers are most likely to 1) report
wrong/broken links in RNs (19.12%), which annoyingly pre-
vent them from accessing supplementary information, and 2)
missing breaking changes (12.35%), which may mislead users
and incur severe consequences after upgrading (e.g., crash).

4.2 Presentation
81 issues are related to Presentation, with two categories: Read-
ability and Usability. Issues from the Presentation dimension help
reveal how information should be organized, formatted, highlighted,
visualized, and phrased in an RN, so that different RN users can
make use of the RN for their purposes with maximum efficiency.

4.2.1 Usability (56, 69.14%). This category refers to the degree to
which users can use RNs to achieve their objectives effectively.

More than half of the issues (31, 38.27%) in this category are
related to Poor Layout, which means the changes are not clearly
organized in RNs. Since different stakeholders may be interested in
different kinds of information, RNs need to have a proper layout for
them to quickly locate the information they want [97, 102]. On the
other hand, poorly organized RNs may increase the time needed
for users to grab valuable information, annoy readers [34], bury
good features [80], and cause important changes to be missed by
impacted users. For example, Electron lists two API deprecations
under the “other” section in the v12.0.0 RN by mistake, which
makes the deprecations easily overlooked [41]. Developers make
the following suggestions in these issues for improving RN layout:

Use markups (e.g., icons or emojis) to highlight breaking changes.
Reorganize changes into a separate section if they are concerned
by a specific audience, e.g., a separate section for database oper-
ators in the RNs of CockroachDB [61].

4In this case, internal developers prepare a RN in advance as a task list for the next
version but they fail to implement all tasks and forget to remove unfinished tasks from
the final RN.

Shorten RNs and fold a lengthy list of details, using detail/sum-
mary tags provided by GitHub Release Page [64], HTML, or
Markdown features [34].

Other issues arise from Poor Formatting (25, 30.86%):
Typesetting (18, 22.22%): Most of these issues are caused by mis-
using syntax of markup languages (e.g., HTML) and usually lead
to abnormal display, e.g., failing to display list due to missing
HTML linebreaks [65].
Date Formatting (7, 8.64%): Some date format can cause ambigui-
ties to people in different geographical regions [31].

4.2.2 Readability (25, 30.86%). This category of issues concerns
whether the RN is easy to read, including three subcategories:
Spelling Errors (14, 17.28%), Grammar Errors (5, 6.17%), Bad Writing
Style (5, 6.17%), and Multilingual Support Required (1, 1.23%). Al-
though fixing grammar errors and spelling errors are easy, they
may be hard to notice, especially for technical terms (e.g., MACs
and Macs [45]). Also, certain writing style can make RNs clearer
and more easily understandable, such as describing what happens
after a bug is fixed instead of what used to happen [27]. One issue
asks for multilingual support which helps more users understand
RNs and enables product adaptation to a broader market [35].

Summary for Presentation:

The majority of issues (69.14%) within this dimension con-
cerns Usability, especially poor layout, which may bury im-
portant information and lead to end users’ misjudgement. De-
velopers propose various solutions to alleviate this problem,
including section reorganization (27.16%), folding (7.41%), and
use of markups (3.70%). Other presentation issues concerns
Readability (30.86%), such as spelling, writing style, etc.

4.3 Accessibility
173 issues are related to Accessibility, i.e., how to make RNs acces-
sible for a broad audience, with three categories: Limited Exposure,
Wrong/Broken Link to RNs, and Lack Notification. Issues in this di-
mension thus reveal how a software project should distribute their
RNs, maintain links, and notify their users.

4.3.1 Limited Exposure (115, 66.47%). Issues under this subcategory
express either difficulty in finding RNs or expectation of more
available ways to access RNs. The former case happens when RNs
are placed in obscure locations, e.g., files with an unconventional
name or in a deeply nested directory [63]. In the latter case, users
suggest various locations to show RNs, e.g., Can we get a page which
explains the features and the release numbers in each of the releases
of Teams Clients? If you have one, we can not find it [18].

4.3.2 Wrong/Broken Link to RNs (36, 20.81%). Missing Links and
Wrong/Broken Links under the Content dimension describe cases
where links in RNs are broken or wrong (see Section 4.1.1 and
Section 4.1.2). In addition, many issues report that links to RNs
themselves (in project website, etc.) may be broken. For example:
(1) The section of the front page of this repo “Links to release notes”

is full of dead links [29].
(2) Links to the Agent release notes from the APM docs left nav are

returning 404s [69].

Demystifying Software Release Note Issues on GitHub ICPC ’22, May 16–17, 2022, Virtual Event, USA

4.3.3 Lack Notification (22, 12.72%). The concerns expressed by
these issues are twofold: 1) whether a certain medium should be
adopted to notify users and publicize RNs, and 2) whether current
ways of notification should be improved. For example, several issues
mention the use of RSS feeds to notify new releases. In another
case, a user complains: Currently, the release notes for an updated
version only show after the new version is installed. Basically, it is
preferable to know in advance what changes are made to the app
before its downloaded and installed [17].

For improving RN accessibility, developers in our studied issues
suggest the following locations to put RNs:

GitHub Release Pages: GitHub provides a dedicated page to dis-
play the release history. Many issues show that developers often
check GitHub Release Pages first when searching for RNs be-
cause they consider GitHub Release Pages as the most intuitive
location for releases and RNs. As stated by a developer: From
an engineering point of view, having release notes published on
GitHub is ideal, this is our source of truth [33].
Project Websites: Developers also expect project websites as RN
management centers providing links to RNs for each release. De-
velopers also suggest using a specific URL for the latest RN [37].
Files in Repositories: Some developers think that a RN file in the
repository (the root directory or the doc/ folder) is more im-
portant than storing RNs on GitHub Release Page [30]. A RN
file in repository makes the repository more self-contained (not
depending on GitHub) and allows the usage of collaborative
editing tools like Git [72]. The OpenStack community also re-
quires that its projects must include RN files to record version
changes and believe that this way can work on multiple patches
simultaneously and reduce merge conflicts [93].
Apps: Application software can provide buttons and links to
access the latest RN, e.g., an ‘about’ button [72]. RN notifications
can also be displayed when a new version is released [46].
Instant Messaging Channels: Such channels can be used to imme-
diately deliver new RNs to subscribed end users, e.g., Slack [50]
and Telegram [56].
Summary for Accessibility:

Users encounter a diverse range of difficulties in accessing
RNs, including Limited Exposure (66.47%),Wrong/Broken Links
to RNs (20.81%), and Lack of Notification (12.72%).

4.4 Production
475 issues fall into the Production dimension, i.e., in what way RNs
should be produced. Problems behind these issues can shed light on
prospective automation approaches, improvement of existing tools,
and design of better release processes. This dimension consists of
three categories: Automation, Planning, and Regulation.
4.4.1 Automation (217, 45.68%). This category reflects four kinds
of issues that developers frequently encounter on automated RN
generation: Request for Automation (118, 24.84%), Request for En-
hancement (37, 7.79%), Error Induced by Automation (36, 7.58%), and
Improper Tool Configuration (26, 5.47%).

Request for Automation (118, 24.84%): More than half of is-
sues in the Automation category are opened for discussing whether
some sort of automation should be used and what specific tools to

adopt for managing and generating RNs. As stated by a developer
from spid-compliant-certificates-python:Despite important, writ-
ing release notes is a very boring task...It would be nice to have them
automatically generated every time a PR is merged [7]. Developers
propose two main types of solutions for automation: 1) writing
project-specific scripts to fill predefined templates and publish re-
leases (e.g., [8]), and 2) adopting existing automated tools such as
Semantic Release [95], git-changelog-generator [14], Release It [91],
and Release Drafter [90]. Although RN automation is a huge help
in reducing manual toil, some developers express their concerns
for full automation in their projects. They think that an automated
workflow: 1) requires prefixes or labels for classifying commits or
PRs, which may burden the code review and CI complexity; 2) is
not suitable for important versions, e.g., stable releases, which need
manual editing for better readability.

Request for Enhancement (37, 7.79%): These issues reveal sug-
gested improvement of automated generation tools and scripts
by users. Specifically, users mostly request for three kinds of sup-
port: 1) automated generation of RNs for different branches [70]; 2)
automated retrieval of related information from multiple reposito-
ries [23]; 3) automated supplement of details, e.g., CVEs [24], attribu-
tion [73], and PR comments [40]. There are also some specific needs
from various scenarios. For example, a member of CockroachDB pro-
poses an extension to the RN extraction script to support the amend-
ment of past RNs with new commits [94]. Another issue opened
by a contributor of chef/automate, reveals the limited support of
combining multiple RNs when upgrading across multiple versions
and asks for further improvement [82]. Some developers suggest
current tools to also add support to automate RN publishing.

Errors Induced by Automation (36, 7.58%): These issues report
defects of automated tools and scripts, which are diverse and largely
tool/project-specific. There are two types of issues: one is that these
defects leads to unexpected RNs, e.g, wrong/missing content [60],
repetition [88], and incorrect positions [68]; the other one is that
these defects affect the generation process failure, e.g., not generat-
ing RNs that exceed certain length [6, 62]. Among these issues, most
of them are caused by defects of current tools rather than project-
specific scripts. Besides, these tools all have to fetch changes history
from Git and several issues are caused by its complex mechanisms,
such as branch control [48], rebase [49] and release tag [32], which
developers need to pay more attention to in design.

Improper Tool Configuration (26, 5.47%): These issues usually
arise from unfamiliarity with the tools, such as generating RNs
without a template or by a wrong template. Most of these issues are
caused by misconfigured change scopes, e.g., the expected branch,
version ranges [43], certain types of changes [16], and triggered
conditions [86]. Besides, parameter misconfiguration is another
common cause, including the construction of paths [79], repository
names [85], and environment variables [42], etc.

4.4.2 Planning (191, 40.21%). This category of issues has four sub-
categories:When to Produce (103, 21.68%),Whether to Produce (58,
12.21%), Where to Produce (29, 6.11%), and Who to Produce (1, 0.21%).

When to Produce (103, 21.68%): Developers discuss two kinds
of issues in this subcategory, Absence and Deadline Required.

In the former case of Absence (93, 19.58%), projects do not pro-
vide RNs for all releases (i.e., some releases are missing RNs),

ICPC ’22, May 16–17, 2022, Virtual Event, USA Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou

which causes their users to open inquiry issues. For example, the
absence of RN for Recoil confuses a user who says: I saw that
version 0.1.3 has been published on npm, but I cannot find release
notes anywhere, would be good to know about potential breaking
changes, deprecations and new additions [77]. Besides, although
most projects provide RNs for every version, some of them are
released too late to be helpful which disappoints users [58].
In the latter case of Deadline Required (10, 2.11%), developers
discuss how to produce RNs timely, e.g., update RNs before a
new version is released [25], give a deadline for the RN [54], and
announce the adoption of a formal release cycle [81].
Whether to Produce (58, 12.21%): This subcategory discusses

the necessity of providing RNs. Some projects never provide RNs for
informing changes in the new release. Consequently, in some cases,
users open issues because the lack of RNs directly leads to upgrade
failures and frustration [39]. They have to resort to various effort-
prone methods to figure out changes from commit history, e.g.,
using git diff to show all code changes between two versions [71].
Although git log can list all commit messages and ease the pain
of figuring out changes to some extent, as stated by a member of
Common Workflow Language, This requires everyone to write the best
possible git commit message and have very clean git histories. While
people are capable of this, it is more work for contributors [52]. In
other cases, internal developers open such issues as they notice
RNs would help developers to precisely see what notable changes have
been made between each release of the project [52]. However, not
everyone agrees with providing a RN with each release, because
they think the changes are only internal or too minor to be worth
mentioning [59, 74]. Other project maintainers acknowledge the
necessity of RNs but they lack time for them [55].

Different fromAccessibility issues, issues in theWhere to Pro-
duce (29, 6.11%) subcategory concern where to collaboratively edit
and store RN files. Although GitHub provides convenient release
functionalities [3] to help developers manage RNs, it currently does
not support collaborative RN editing. By contrast, many projects
with a large team wish to distribute RN workload among team
members so that RNs can be scalably produced. As a result, most
projects opt for adding RNs as files in the git repository so that
multiple developers can be involved in RN production (e.g., [30]).

One special case mentions the lack of accountability in RN
production and suggests someone should be responsible for it [57].

4.4.3 Regulation (67, 14.11%). This category of issues refers to what
regulations should be followed to simplify and ease the production
of RNs. It covers three subcategories: PR/Issue/Commit Management
(40, 8.42%), Inconsistency (16, 3.37%), andWorkflow (11, 2.32%).

PR/Issue/Commit Management (40, 8.42%): This subcategory
refers to issues discussing how to efficiently prepare (relevant)
PRs, issues, and commits for RNs. This procedure is usually time-
consuming, especially for large projects. For example, a member
from pytorch/vision complains that I wrote the release notes last
week and we spent the vast majority of the time labeling the PRs and
suggests it’d be good to have a process that wouldmake this faster [53].
Some solutions emerges from the discussions in these issues. For
commits, developers prefer to adopt a convention for writing struc-
tured commit messages (e.g., conventional commit rule [9]), so that
changes (e.g, features, fixes, and breaking changes) in a commit can

be documented in a machine-parsable way. For PRs, several large
projects recommend to label each PR with pre-defined labels. In the
case of pytorch/vision, developers reach a consensus on categoriz-
ing each PR with GitHub labels describing affected components and
changed types (e.g., breaking changes and improvements) [53]. For
issues, many developers mention the use of GitHub milestone [2]
for progress tracking. Some projects create each milestone using
version numbers and group issues into milestones [78], which re-
duces the scope of review when developers write RNs.

Inconsistency (16, 3.37%): This subcategory refers to issues
about inconsistencies between 1) RNs published in different places,
2) RNs and other documentation within project, and 3) RNs and
documentation in other projects. As revealed in the Accessibility
dimension, RNs are usually published in different places including,
GitHub Release Page, project homepage, etc. However, developers
sometimes neglect to maintain their consistency. For example, a
user suggests that It’d be great to have a way to sync release notes
in docs.newrelic.com by fetching the information from GitHub [33].
RNs can also easily become inconsistent with other documentation
within project, e.g., usage guides and READMEs. As an example
of inconsistency between RNs and usage guides, a user complains
that our documentation is horribly outdated and calls for internal
developers to go through all release notes and move all information
that is not outdated and is missing from the documentation to the
usage guide [38]. Finally, RNs sometimes need to include changes
or attribution information from closely related projects, which
requires collaboration of developers from the related projects.

Workflow (11, 2.32%): This subcategory refers to issues dis-
cussing formulation of RN production workflow or improvement on
existing workflow. Among the issues, nine are opened as a Request
for aWorkflow. For example, a developer from mantid/mantidimaging

formulates a workflow as follows: Release notes should be continu-
ously updated during development. Almost all pull requests should
have an update to the relevant file and section in docs/release_notes.
If the next release name is not yet chosen, this will be next.rts, and
renamed closer to release. When fixes are backported to a release
branch, they can be added to the notes for that release, in an updates
section [87]. One issue discusses File Naming and suggests avoid
confusing RN naming format [20]. Another issue discusses Reposi-
tory Permission Control where developers in kubernetes/test-infra

request to have the permission to collaboratively edit RNs. This
project only allows very few members to have write access to RNs,
causing others to ping someone with write access or the author of the
parent PR to add the release note to the PR body [76].

Summary for Production:

Developers show a strong interest in Automation (45.68% of is-
sues within this dimension), but automated tools/scripts may
lack desired features, tend to induce errors, and are hard or
error-prone to configure. Additionally, without proper Plan-
ning (40.21%), e.g., release schedules and deadlines, users may
be confused about the absence of RNs. Finally, Regulation
(14.11%) of RN production, especially conventions for pull re-
quests (PRs), issues, and commits (8.42%), is vital for enabling
efficient RN production in large software projects.

docs.newrelic.com

Demystifying Software Release Note Issues on GitHub ICPC ’22, May 16–17, 2022, Virtual Event, USA

5 DISCUSSION
5.1 Implications
5.1.1 Comparison with Previous Work. Since previous works cate-
gorize RN content into different taxonomies [102, 117], it is not easy
to perform detailed comparison of our results with theirs (mapping
results from different work can be a possibility for future studies).
We can still observe some interesting differences by summarizing
most frequently occurring RN content in different taxonomies in
Table 3: 1) breaking changes and links are more likely to have issues
but they are not listed as a major category in previous taxonomies;
2) new features and bug fixes are not likely to have issues even if
they occur most frequently in previous taxonomies; 3) some infor-
mation frequently desired by users are not mentioned in previous
work, such as migration/usage instructions, code examples, and
dependency specifications. Our lens of observation sheds light on
the most fragile parts of RNs untouched in previous taxonomies.

The taxonomy in our paper also extends thework of Bi et al. [102]
with a significant amount of new empirical evidence and actionable
implications. For example, they find in RQ2.2 that clear structured
and thewriting styles of release note documentation are vital.We go
one step further and identify concrete evidence on how structure
and style impact users, which we further derive into actionable
advice on how to write and organize RNs.
5.1.2 A Checklist for RN Production. Based on the results summa-
rized in Section 4, we provide a checklist as follows.

✓ What Should be Included in RNs? We find that issues related to
RNContent (Section 4.1) have different distribution compared with
most frequent RN content identified in previousworks [97, 102, 117],
which indicates that some types of information are more likely to
be missed or incorrect than others. Therefore, we recommend RN
producer to check whether the following eight kinds of changes
have been described in RNs: 1) Breaking Changes, 2) New Features,
3) Enhancements, 4) Fixed Bugs, 5) Documentation Changes, 6)
Dependency/environment Changes, 7) Security Changes, and 8)
License Changes.We also find that additional information that bene-
fits better understanding and tracking of these changes, e.g., links to
corresponding PRs/issues/commits, is preferred by users. We there-
fore recommend including, where necessary, the following eight
kinds of explanatory information in RNs: 1) Links to Change-Related
PRs, Issues, and Commits, 2) Guides (e.g., upgrade, migration, or
setup guides), 3) Code Examples, 4) Dependency/environment Spec-
ification, 5) Attributions (e.g., authors, reviewers, commenters, etc.),
6) Explanation for Jargon-Heavy Descriptions, 7) Versioning Infor-
mation (e.g., release time, version name/number, setup package,
etc), and 8) Known Issues.

✓ How to Ensure RNs’ Completeness? Our results from Section 4.1
show that RNs are more frequently affected by Completeness issues
than Correctness ones, e.g., missing breaking changes, which indi-
cates the importance of ensuring completeness in RN production.
Thus, applying completeness checks on RNs, i.e., making sure all
critical changes are listed, is strongly recommended. However, our
investigations reveal two main reasons for completeness issues: 1)
lacking manpower or time to conduct thorough inspections; 2) dif-
ficult for a limited number of developers to understand all changes
between versions. While automated tools for checking RN com-
pleteness is still lacking, we locate several practices suggested by

issue participants that may make RNs more likely to be complete
and reduce the pressure to review changes:

For each change description in RNs, add links to the correspond-
ing PR, issue, commit, or external resources (e.g., CVE) so that
its completeness can be easily checked.
Adopt a systematic and structured way to label and organize
changes (i.e., PRs/commits/issues), as discussed in Section 4.4.3.
Distribute workload among all contributors instead of having a
central responsible person for creating RNs. For example, some
projects require that each PR should contain a release notes
section in the PR body that describes the affected submodule
name and a list of changes for that submodule [96].
✓ How Should RNs be Organized? The issues related to Presenta-

tion indicate that layout indeed greatly influences RN reading expe-
rience, as mentioned by Bi et al. [102]. An analogy is the relationship
between content and directory: if the content is misplaced or not
indexed, it is easy to miss the content you are interested in [41, 80].
From these issues and their related RNs, we find that several “hier-
archical structure” can be used to separate changes into categories
and better organize RNs. Based on results in Section 4.2.1, we rec-
ommend two strategies to group changes: 1) by type of change
(e.g., new features, fixed bugs, breaking changes); 2) by affected
component (e.g., the network module). The two strategies can be
combined (e.g., first by component and then by type of change). We
also recommend to highlight most important changes (e.g., break-
ing changes, major new features) on top. After an organization is
determined, we further recommend to use proper visualization and
fold lengthy lists for highlighting important changes.

✓ How to Choose Writing Style for RNs? When investigating
issues under Bad Writing Style, a case attracts our attention, i.e., RN
should be funny and cryptic in app stores to attract non-technical end
users but concise and clear on GitHub to deliver information efficiently.
Because the requirements of users differ from these of internal
developers, we recommend projects to provide different RNs in
different writing styles to serve different audiences (stakeholders).
For example, Apache Camel provides two types of RNs: one is more
generalized and summarized [5] intended for the end users, while
the other is a list of all issues that have been resolved under this
update intended for someone who needs technical details [89].

✓ How to Make RNs (More) Accessible? This problem involves
not only how users can access RN quickly (Limited Exposure and
Lack Notification), but also where producers should collaboratively
edit and store RNs (Where to Produce). It can be relieved through
some more diverse ways for notification and access. As summarized
in Section 4.3, we recommend developers to consider publicizing
RNs in the following locations, if applicable, to make their RNs
more accessible: GitHub Release Pages, Project Websites, Files in
Repositories, Apps, and Instant Messaging Channels.

✓ Link Check.We find many issues related to links, e.g.,Missing
Links and Wrong Links under Content, and Wrong/Broken Links to
RNs under Accessibility. Broken or wrong links often make users
unpleasant and increase their cost of searching. A developer from
mantidproject/mantid mentions that they need to go over release
and check links work before releasing [47]. Checking invalid links
regularly in RN can mitigate this problem, that can be achieved
by some tools, e.g., Xenu Link Sleuth [11] and HTML Link Val-
idator [15]. Besides, providing absolute path instead of relative

ICPC ’22, May 16–17, 2022, Virtual Event, USA Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou

Table 3: Comparison of Most Frequent RN Content in Different Taxonomies.

Moreno et al. [117] Bi et al. [102] Ours (Completeness)∗ Ours (Correctness)∗

Fixed Bugs (90%) Issues Fixed (79.3%) Breaking Changes (22.93%) Links (51.06%)
New Features (46%) New Features (55.1%) New Features (14.01%) Version Information (14.89%)
New Code Components (43%) System Internal Changes (25.1%) Links (11.46%) Dependency Specifications (7.45%)
Modified Features (26%) Non-functional Requirements (10.3%) Dependency Specifications (8.92%) Identifiers (7.45%)
Refactoring Operations (21%) Documentation Updates (9.5%) Migration/Usage Instructions (8.92%) Code Examples (5.32%)
∗ The percentages here are different from Figure 1 because the denominators are the total number of issues in the Completeness (157 issues) and the Correctness (94
issues) category, respectively. In the Completeness column, issues from Missing and Insufficient are merged.

path [83] can reduce potential broken risks, no matter in RNs or in
other documents containing links to RNs, e.g., READMEs.
5.1.3 Automating RN Production. Apart from the tool-specific prob-
lems in Section 4.4, we further summarize the following research
directions that may greatly help automated RN generation:

3 Automated Labeling of Software Changes: Our results in Sec-
tion 4.4.1 show that many developers request for tools to automate
RN production. However, to the best of our knowledge, existing
tools have strong constraints on input. Some well-known tools,
e.g., github-activity and Release Drafter, require a compatible PR
label system. Semantic-Release requires developers to write commit
messages following a specific rule, i.e., Angular Commit Message
Conventions, requiring developers to specify which category a com-
mit belongs to manually. These preconditions limit their application
scope, and the whole project needs to change its production process
to adapt to it [84]. Techniques for automated commit/PR classifica-
tion, which we consider as a promising direction, can alleviate this
problem. Existing commit classification methods (e.g., [106, 115])
mainly focus on classifying commits into three maintenance cate-
gories (i.e., corrective, adaptive, and perfective) proposed by Swan-
son [122], which is not suitable for RN generation. Therefore, clas-
sifying commits into categories suitable for RN generation (e.g.,
the eight kinds of changes proposed in Section 5.1.2) is needed to
facilitate automated RN generation. Similar discrepancies also exist
for works on PR classification [112, 128].

3 Automated Summarization and Language Style Unification: As
reflected in Section 4.2, a fluent and unified writing style is vital to
RN Readability. However, existing tools generate RNs by integrating
existing text, e.g., PR titles and commit messages, which not only
violates RNs’ fundamental principle (it should focus on the impact
for the user and make that understandable [92]), but also offloads the
quality responsibility to developers writing other development text.
This often leads to poor readability of the final generated RNs. With
advances in natural language preprocessing (NLP) tasks like text
summarization [105] and style transfer [125], it will be interesting
to explore approaches that summarize existing development text
and unify language style for automated RN generation.

3 Automated Testing of RNs: As shown in Section 4.1, Complete-
ness and Correctness are the key to a high quality RN. Although we
synthesize a checklist of practices during the process of RN produc-
tion, these largely manual practices are hardly a strong guarantee
for reducing the risk of incompleteness or incorrectness. To the
best of our knowledge, there is still no tool designed for testing (i.e.,
inconsistency checking) of RNs. Challenges for facilitating such
testing may include: 1) checking the consistency between natural
language description and software changes; and 2) checking the
consistency between documentation from different sources (e.g.,

RNs and usage guides, Section 4.4.3). Similar works for, e.g., check-
ing code comment inconsistency [123, 129], may be a good starting
port for exploring the possibility of such a tool. Furthermore, since
users perceive breaking changes as important but frequently miss-
ing in RNs (Section 4.1.1), works on breaking change and update
incompatibility detection [114] should also be important.

5.2 Threats to Validity
5.2.1 Internal Validity. Our taxonomy construction is based en-
tirely on manual analysis, which may introduce subjectivity and
labeling errors. To mitigate these threats, we include two inspectors
and one arbitrator into the process, all with rich development ex-
perience. To ensure the quality of taxonomy, we conduct multiple
iterative rounds to refine the taxonomy and incorporates feedback
from real developers. We also measure inter-rater reliability to
ensure that the taxonomy is precisely defined and reproducible.

5.2.2 External Validity. Our work only uses issues from GitHub
projects for categorizing RN issues, which means that our results
may not be generalized to another context (e.g., industry projects).
Since GitHub is a huge and diverse coding platform and the projects
involved in our analysis are of high quality, we believe our results
reveal valuable insights and practical challenges in RN production
and usage. To further confirm our belief, we invite three industry
developers to validate whether our taxonomy can cover the RN
issues they have encountered. However, the limited number of
developers also poses a threat, which we find it hard to mitigate
because it is not easy to locate industry developers experiencedwith
RNs. Future work may be able to gain different insights through
other data sources or interviews/surveys at a larger scale.

Another threat to external validity comes from using only issues
with keyword “release note” in their titles. Many issues may still
discuss RNs even if they do not have the keyword in their titles. The
threat can be mitigated by the size of our dataset that is comparable
to and even larger than existing studies [99, 101, 103, 124, 130].

6 CONCLUSION
In this paper, we have presented a taxonomy of real-world RN
issues summarized from GitHub. Our taxonomy not only distills
to a practitioner-oriented checklist for release note production,
but also lays out an empirical foundation for several interesting
research directions for release note automation. As future work,
we plan to investigate such opportunities for integrating novel
automation approaches with existing release note workflows.

Acknowledgments. This work is supported by the National Key
R&D Program of China Grant 2018YFB1004201 and the National
Natural Science Foundation of China Grant 61825201.

Demystifying Software Release Note Issues on GitHub ICPC ’22, May 16–17, 2022, Virtual Event, USA

REFERENCES
[1] 2021. About issues - GitHub Docs. https://docs.github.com/en/issues/tracking-

your-work-with-issues/about-issues.
[2] 2021. About milestones - GitHub Docs. https://docs.github.com/en/issues/using-

labels-and-milestones-to-track-work/about-milestones.
[3] 2021. About releases - GitHub Docs. https://docs.github.com/en/repositories/

releasing-projects-on-github/about-releases.
[4] 2021. angular.js/DEVELOPERS.md at master · angular/angular.js. https://github.

com/angular/angular.js/blob/master/DEVELOPERS.md#commits.
[5] 2021. Apache Camel 3.11 What’s New - Apache Camel. https://camel.apache.

org/blog/2021/06/Camel311-Whatsnew/.
[6] 2021. AppCenterDistributeV3 should truncate release notes. https://github.com/

microsoft/azure-pipelines-tasks/issues/11922.
[7] 2021. Auto generate release notes. https://github.com/italia/spid-compliant-

certificates-python/issues/6.
[8] 2021. Automate release notes. https://github.com/eclipse/rdf4j/issues/2784.
[9] 2021. Conventional Commits. https://www.conventionalcommits.org/.
[10] 2021. Convergence Q&A: The Answer is in Black and White | Security Info

Watch. https://www.securityinfowatch.com/cybersecurity/article/10840073/the-
importance-of-release-notes.

[11] 2021. Find broken links on your site with Xenu’s Link Sleuth (TM). https:
//home.snafu.de/tilman/xenulink.html.

[12] 2021. The Firefox release notes process - MozillaWiki. https://wiki.mozilla.org/
Release_Management/Release_Notes.

[13] 2021. GH Archive. https://www.gharchive.org/.
[14] 2021. github-changelog-generator. https://github.com/github-changelog-

generator/github-changelog-generator.
[15] 2021. HTML Link Validator - Download. https://html-link-validator.en.softonic.

com/.
[16] 2021. Issue #103 of PSBicep/PSBicep. https://github.com/PSBicep/PSBicep/

issues/103.
[17] 2021. Issue #1097 of sublimehq/sublime_merge. https://github.com/sublimehq/

sublime_merge/issues/1097.
[18] 2021. Issue #1123 of dotnet/SqlClient. https://github.com/dotnet/SqlClient/

issues/1123.
[19] 2021. Issue #11517 of keras-team/keras. https://github.com/keras-team/keras/

issues/11517.
[20] 2021. Issue #1255 of newrelic/docs-website. https://github.com/newrelic/docs-

website/issues/1255.
[21] 2021. Issue #1271 of cesanta/mongoose. https://github.com/cesanta/mongoose/

issues/1271.
[22] 2021. Issue #12961 of babel/babel. https://github.com/babel/babel/issues/12961.
[23] 2021. Issue #131 of rfennell/ReleaseNotesAction. https://github.com/rfennell/

ReleaseNotesAction/issues/131.
[24] 2021. Issue #1354 of kubernetes/release. https://github.com/kubernetes/release/

issues/1354.
[25] 2021. Issue #1682 of microsoft/ApplicationInsights-Java. https://github.com/

microsoft/ApplicationInsights-Java/issues/1682.
[26] 2021. Issue #17977 of numpy/numpy. https://github.com/numpy/numpy/issues/

17977.
[27] 2021. Issue #18 of hazelcast/cloud-docs. https://github.com/hazelcast/cloud-

docs/issues/18.
[28] 2021. Issue #1873 of Azure/azure-sdk. https://github.com/Azure/azure-sdk/

issues/1873.
[29] 2021. Issue #194 of HOKGroup/HOK-Revit-Addins. https://github.com/

HOKGroup/HOK-Revit-Addins/issues/194.
[30] 2021. Issue #1966 of decred/dcrwallet. https://github.com/decred/dcrwallet/

issues/1966.
[31] 2021. Issue #1990 of bigcommerce/cornerstone. https://github.com/

bigcommerce/cornerstone/issues/1990.
[32] 2021. Issue #2000 of DataDog/dd-trace-py. https://github.com/DataDog/dd-

trace-py/issues/2000.
[33] 2021. Issue #2127 of newrelic/docs-website. https://github.com/newrelic/docs-

website/issues/2127.
[34] 2021. Issue #2178 of vaadin/platform. https://github.com/vaadin/platform/

issues/2178.
[35] 2021. Issue #2207 of microsoft/appcenter. https://github.com/microsoft/

appcenter/issues/2207.
[36] 2021. Issue #2410 of NuGet/docs.microsoft.com-nuget. https://github.com/

NuGet/docs.microsoft.com-nuget/issues/2410.
[37] 2021. Issue #2502 of 3drepo/3drepo.io. https://github.com/3drepo/3drepo.io/

issues/2502.
[38] 2021. Issue #2527 of rotki/rotki. https://github.com/rotki/rotki/issues/2527.
[39] 2021. Issue #260 of getsentry/sentry-laravel. https://github.com/getsentry/

sentry-laravel/issues/260.
[40] 2021. Issue #27 of stephend017/snake-charmer. https://github.com/stephend017/

snake-charmer/issues/27.

[41] 2021. Issue #28375 of electron/electron. https://github.com/electron/electron/
issues/28375.

[42] 2021. Issue #29 of waifu-motivator/wmp-env-action. https://github.com/waifu-
motivator/wmp-env-action/issues/29.

[43] 2021. Issue #2907 of meshery/meshery. https://github.com/meshery/meshery/
issues/2907.

[44] 2021. Issue #3 of cwarwicker/moodle-tool_ribbons. https://github.com/
cwarwicker/moodle-tool_ribbons/issues/3.

[45] 2021. Issue #300 of MicrosoftDocs/OfficeDocs-OfficeUpdates. https://github.
com/MicrosoftDocs/OfficeDocs-OfficeUpdates/issues/300.

[46] 2021. Issue #302 of chef/chef-workstation-app. https://github.com/chef/chef-
workstation-app/issues/302.

[47] 2021. Issue #31371 of mantidproject/mantid. https://github.com/mantidproject/
mantid/issues/31371.

[48] 2021. Issue #3145 of BlueWallet/BlueWallet. https://github.com/BlueWallet/
BlueWallet/issues/3145.

[49] 2021. Issue #31816 of istio/istio. https://github.com/istio/istio/issues/31816.
[50] 2021. Issue #3193 of cdr/code-server. https://github.com/cdr/code-server/issues/

3193.
[51] 2021. Issue #3238 of nushell/nushell. https://github.com/nushell/nushell/issues/

3238.
[52] 2021. Issue #328 of common-workflow-language/cwlviewer. https://github.com/

common-workflow-language/cwlviewer/issues/328.
[53] 2021. Issue #3351 of pytorch/vision. https://github.com/pytorch/vision/issues/

3351.
[54] 2021. Issue #376 of USAJOBS-temp/openoppstasks. https://github.com/

USAJOBS-temp/openoppstasks/issues/376.
[55] 2021. Issue #432 of negomi/react-burger-menu. https://github.com/negomi/

react-burger-menu/issues/432.
[56] 2021. Issue #48 of wabarc/wayback. https://github.com/wabarc/wayback/issues/

48.
[57] 2021. Issue #5236 of wellcomecollection/wellcomecollection.org. https://github.

com/wellcomecollection/wellcomecollection.org/issues/5236.
[58] 2021. Issue #533 of hashicorp/terraform-ls. https://github.com/hashicorp/

terraform-ls/issues/533.
[59] 2021. Issue #544 of dask/fastparquet. https://github.com/dask/fastparquet/

issues/544.
[60] 2021. Issue #54752 of saltstack/salt. https://github.com/saltstack/salt/issues/

54752.
[61] 2021. Issue #57898 of cockroachdb/cockroach. https://github.com/cockroachdb/

cockroach/issues/57898.
[62] 2021. Issue #581 of digidem/mapeo-mobile. https://github.com/digidem/mapeo-

mobile/issues/581.
[63] 2021. Issue #59 of hedgedoc/hedgedoc.github.io. https://github.com/hedgedoc/

hedgedoc.github.io/issues/59.
[64] 2021. Issue #5913 of prisma/prisma. https://github.com/prisma/prisma/issues/

5913/#issuecomment-788326709.
[65] 2021. Issue #64 of nathanwoulfe/Plumber-2. https://github.com/nathanwoulfe/

Plumber-2/issues/64.
[66] 2021. Issue #663 from vue-leaflet/Vue2Leaflet. https://github.com/vue-leaflet/

Vue2Leaflet/issues/663.
[67] 2021. Issue #7058 of coq/coq. https://github.com/coq/coq/issues/7058/

#issuecomment-375720879.
[68] 2021. Issue #714 of gitpod-io/gitpod. https://github.com/gitpod-io/gitpod/issues/

714.
[69] 2021. Issue #758 of newrelic/docs-website. https://github.com/newrelic/docs-

website/issues/758.
[70] 2021. Issue #789 of opensearch-project/OpenSearch. https://github.com/

opensearch-project/OpenSearch/issues/789.
[71] 2021. Issue #79 of rayokota/kcache. https://github.com/rayokota/kcache/issues/

79.
[72] 2021. Issue #808 of alteryx/woodwork. https://github.com/alteryx/woodwork/

issues/808.
[73] 2021. Issue #8605 of renovatebot/renovate. https://github.com/renovatebot/

renovate/issues/8605.
[74] 2021. Issue #87 of dtolnay/semver. https://github.com/dtolnay/semver/issues/87.
[75] 2021. Issue #882 of MicrosoftEdge/WebView2Feedback. https://github.com/

MicrosoftEdge/WebView2Feedback/issues/882.
[76] 2021. Issue #9098 of kubernetes/test-infra. https://github.com/kubernetes/test-

infra/issues/9098.
[77] 2021. Issue #916 of facebookexperimental/Recoil. https://github.com/

facebookexperimental/Recoil/issues/916.
[78] 2021. Issue #916 of kubernetes-sigs/multi-tenancy. https://github.com/

kubernetes-sigs/multi-tenancy/issues/916.
[79] 2021. Issue #99 of zammad/zammad-helm. https://github.com/zammad/zammad-

helm/issues/99.).
[80] 2021. Issue #9903 of EOSIO/eos. https://github.com/EOSIO/eos/issues/9903.

https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/about-milestones
https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/about-milestones
https://docs.github.com/en/repositories/releasing-projects-on-github/about-releases
https://docs.github.com/en/repositories/releasing-projects-on-github/about-releases
https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#commits
https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#commits
https://camel.apache.org/blog/2021/06/Camel311-Whatsnew/
https://camel.apache.org/blog/2021/06/Camel311-Whatsnew/
https://github.com/microsoft/azure-pipelines-tasks/issues/11922
https://github.com/microsoft/azure-pipelines-tasks/issues/11922
https://github.com/italia/spid-compliant-certificates-python/issues/6
https://github.com/italia/spid-compliant-certificates-python/issues/6
https://github.com/eclipse/rdf4j/issues/2784
https://www.conventionalcommits.org/
https://www.securityinfowatch.com/cybersecurity/article/10840073/the-importance-of-release-notes
https://www.securityinfowatch.com/cybersecurity/article/10840073/the-importance-of-release-notes
https://home.snafu.de/tilman/xenulink.html
https://home.snafu.de/tilman/xenulink.html
https://wiki.mozilla.org/Release_Management/Release_Notes
https://wiki.mozilla.org/Release_Management/Release_Notes
https://www.gharchive.org/
https://github.com/github-changelog-generator/github-changelog-generator
https://github.com/github-changelog-generator/github-changelog-generator
https://html-link-validator.en.softonic.com/
https://html-link-validator.en.softonic.com/
https://github.com/PSBicep/PSBicep/issues/103
https://github.com/PSBicep/PSBicep/issues/103
https://github.com/sublimehq/sublime_merge/issues/1097
https://github.com/sublimehq/sublime_merge/issues/1097
https://github.com/dotnet/SqlClient/issues/1123
https://github.com/dotnet/SqlClient/issues/1123
https://github.com/keras-team/keras/issues/11517
https://github.com/keras-team/keras/issues/11517
https://github.com/newrelic/docs-website/issues/1255
https://github.com/newrelic/docs-website/issues/1255
https://github.com/cesanta/mongoose/issues/1271
https://github.com/cesanta/mongoose/issues/1271
https://github.com/babel/babel/issues/12961
https://github.com/rfennell/ReleaseNotesAction/issues/131
https://github.com/rfennell/ReleaseNotesAction/issues/131
https://github.com/kubernetes/release/issues/1354
https://github.com/kubernetes/release/issues/1354
https://github.com/microsoft/ApplicationInsights-Java/issues/1682
https://github.com/microsoft/ApplicationInsights-Java/issues/1682
https://github.com/numpy/numpy/issues/17977
https://github.com/numpy/numpy/issues/17977
https://github.com/hazelcast/cloud-docs/issues/18
https://github.com/hazelcast/cloud-docs/issues/18
https://github.com/Azure/azure-sdk/issues/1873
https://github.com/Azure/azure-sdk/issues/1873
https://github.com/HOKGroup/HOK-Revit-Addins/issues/194
https://github.com/HOKGroup/HOK-Revit-Addins/issues/194
https://github.com/decred/dcrwallet/issues/1966
https://github.com/decred/dcrwallet/issues/1966
https://github.com/bigcommerce/cornerstone/issues/1990
https://github.com/bigcommerce/cornerstone/issues/1990
https://github.com/DataDog/dd-trace-py/issues/2000
https://github.com/DataDog/dd-trace-py/issues/2000
https://github.com/newrelic/docs-website/issues/2127
https://github.com/newrelic/docs-website/issues/2127
https://github.com/vaadin/platform/issues/2178
https://github.com/vaadin/platform/issues/2178
https://github.com/microsoft/appcenter/issues/2207
https://github.com/microsoft/appcenter/issues/2207
https://github.com/NuGet/docs.microsoft.com-nuget/issues/2410
https://github.com/NuGet/docs.microsoft.com-nuget/issues/2410
https://github.com/3drepo/3drepo.io/issues/2502
https://github.com/3drepo/3drepo.io/issues/2502
https://github.com/rotki/rotki/issues/2527
https://github.com/getsentry/sentry-laravel/issues/260
https://github.com/getsentry/sentry-laravel/issues/260
https://github.com/stephend017/snake-charmer/issues/27
https://github.com/stephend017/snake-charmer/issues/27
https://github.com/electron/electron/issues/28375
https://github.com/electron/electron/issues/28375
https://github.com/waifu-motivator/wmp-env-action/issues/29
https://github.com/waifu-motivator/wmp-env-action/issues/29
https://github.com/meshery/meshery/issues/2907
https://github.com/meshery/meshery/issues/2907
https://github.com/cwarwicker/moodle-tool_ribbons/issues/3
https://github.com/cwarwicker/moodle-tool_ribbons/issues/3
https://github.com/MicrosoftDocs/OfficeDocs-OfficeUpdates/issues/300
https://github.com/MicrosoftDocs/OfficeDocs-OfficeUpdates/issues/300
https://github.com/chef/chef-workstation-app/issues/302
https://github.com/chef/chef-workstation-app/issues/302
https://github.com/mantidproject/mantid/issues/31371
https://github.com/mantidproject/mantid/issues/31371
https://github.com/BlueWallet/BlueWallet/issues/3145
https://github.com/BlueWallet/BlueWallet/issues/3145
https://github.com/istio/istio/issues/31816
https://github.com/cdr/code-server/issues/3193
https://github.com/cdr/code-server/issues/3193
https://github.com/nushell/nushell/issues/3238
https://github.com/nushell/nushell/issues/3238
https://github.com/common-workflow-language/cwlviewer/issues/328
https://github.com/common-workflow-language/cwlviewer/issues/328
https://github.com/pytorch/vision/issues/3351
https://github.com/pytorch/vision/issues/3351
https://github.com/USAJOBS-temp/openoppstasks/issues/376
https://github.com/USAJOBS-temp/openoppstasks/issues/376
https://github.com/negomi/react-burger-menu/issues/432
https://github.com/negomi/react-burger-menu/issues/432
https://github.com/wabarc/wayback/issues/48
https://github.com/wabarc/wayback/issues/48
https://github.com/wellcomecollection/wellcomecollection.org/issues/5236
https://github.com/wellcomecollection/wellcomecollection.org/issues/5236
https://github.com/hashicorp/terraform-ls/issues/533
https://github.com/hashicorp/terraform-ls/issues/533
https://github.com/dask/fastparquet/issues/544
https://github.com/dask/fastparquet/issues/544
https://github.com/saltstack/salt/issues/54752
https://github.com/saltstack/salt/issues/54752
https://github.com/cockroachdb/cockroach/issues/57898
https://github.com/cockroachdb/cockroach/issues/57898
https://github.com/digidem/mapeo-mobile/issues/581
https://github.com/digidem/mapeo-mobile/issues/581
https://github.com/hedgedoc/hedgedoc.github.io/issues/59
https://github.com/hedgedoc/hedgedoc.github.io/issues/59
https://github.com/prisma/prisma/issues/5913/#issuecomment-788326709
https://github.com/prisma/prisma/issues/5913/#issuecomment-788326709
https://github.com/nathanwoulfe/Plumber-2/issues/64
https://github.com/nathanwoulfe/Plumber-2/issues/64
https://github.com/vue-leaflet/Vue2Leaflet/issues/663
https://github.com/vue-leaflet/Vue2Leaflet/issues/663
https://github.com/coq/coq/issues/7058/#issuecomment-375720879
https://github.com/coq/coq/issues/7058/#issuecomment-375720879
https://github.com/gitpod-io/gitpod/issues/714
https://github.com/gitpod-io/gitpod/issues/714
https://github.com/newrelic/docs-website/issues/758
https://github.com/newrelic/docs-website/issues/758
https://github.com/opensearch-project/OpenSearch/issues/789
https://github.com/opensearch-project/OpenSearch/issues/789
https://github.com/rayokota/kcache/issues/79
https://github.com/rayokota/kcache/issues/79
https://github.com/alteryx/woodwork/issues/808
https://github.com/alteryx/woodwork/issues/808
https://github.com/renovatebot/renovate/issues/8605
https://github.com/renovatebot/renovate/issues/8605
https://github.com/dtolnay/semver/issues/87
https://github.com/MicrosoftEdge/WebView2Feedback/issues/882
https://github.com/MicrosoftEdge/WebView2Feedback/issues/882
https://github.com/kubernetes/test-infra/issues/9098
https://github.com/kubernetes/test-infra/issues/9098
https://github.com/facebookexperimental/Recoil/issues/916
https://github.com/facebookexperimental/Recoil/issues/916
https://github.com/kubernetes-sigs/multi-tenancy/issues/916
https://github.com/kubernetes-sigs/multi-tenancy/issues/916
https://github.com/zammad/zammad-helm/issues/99
https://github.com/zammad/zammad-helm/issues/99
https://github.com/EOSIO/eos/issues/9903

ICPC ’22, May 16–17, 2022, Virtual Event, USA Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou

[81] 2021. Move to a formal release cycle with release notes. https://github.com/
girder/cookiecutter-girder-4/issues/45.

[82] 2021. Provide release note information in a format that supports users not
upgrading from version N to version N+1. https://github.com/chef/automate/
issues/2141.

[83] 2021. Pull Request #1114 of hedgedoc/hedgedoc. https://github.com/hedgedoc/
hedgedoc/pull/1114/files.

[84] 2021. Pull Request #1164 of opentelekomcloud/terraform-provider-
opentelekomcloud. https://github.com/opentelekomcloud/terraform-provider-
opentelekomcloud/pull/1164.

[85] 2021. Pull Request #279 of corgibytes/freshli-lib. https://github.com/corgibytes/
freshli-lib/pull/279/files.

[86] 2021. Pull Request #301 of corgibytes/freshli-lib. https://github.com/corgibytes/
freshli-lib/pull/301/files.

[87] 2021. Pull Request #798 of mantidproject/mantidimaging. https://github.com/
mantidproject/mantidimaging/pull/798/files.

[88] 2021. Pull Request #83 of gohugoio/hugo. https://github.com/gohugoio/hugo/
pull/83.

[89] 2021. Release 3.11.0 - Apache Camel. https://camel.apache.org/releases/release-
3.11.0/.

[90] 2021. Release-Drafter. https://github.com/release-drafter/release-drafter.
[91] 2021. Release It! https://github.com/release-it/release-it.
[92] 2021. Release Management—OpenStack Project Team Guide Documen-

tation. https://docs.openstack.org/project-team-guide/release-management.
html#how-to-add-new-release-notes.

[93] 2021. reno: A New Way to Manage Release Notes — reno 3.4.1.dev1 documenta-
tion. https://docs.openstack.org/reno/latest/.

[94] 2021. scripts/release-notes: make it possible to edit a release note in a different
commit. https://github.com/cockroachdb/cockroach/issues/42163.

[95] 2021. Semantic Release. https://github.com/semantic-release/semantic-release.
[96] 2021. Writing Release Notes ·sympy/sympy Wiki. https://github.com/sympy/

sympy/wiki/Writing-Release-Notes.
[97] Surafel Lemma Abebe, Nasir Ali, and Ahmed E Hassan. 2016. An empirical

study of software release notes. Empirical Software Engineering 21, 3 (2016),
1107–1142. https://doi.org/10.1007/s10664-015-9377-5

[98] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele
Bavota, Michele Lanza, and David C Shepherd. 2020. Software documentation:
the practitioners’ perspective. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). IEEE, 590–601. https://doi.org/10.1145/3377811.
3380405

[99] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-
Vásquez, Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software
documentation issues unveiled. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 1199–1210. https://doi.org/10.1109/ICSE.
2019.00122

[100] Abdulkareem Alali, Huzefa Kagdi, and Jonathan I Maletic. 2008. What’s a
typical commit? A characterization of open source software repositories. In 2008
16th IEEE International Conference on Program Comprehension. IEEE, 182–191.
https://doi.org/10.1109/ICPC.2008.24

[101] Stefanie Beyer, Christian Macho, Massimiliano Di Penta, and Martin Pinzger.
2018. Automatically classifying posts into question categories on Stack Overflow.
In 2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC). IEEE, 211–21110. https://doi.org/10.1145/3196321.3196333

[102] Tingting Bi, Xin Xia, David Lo, John Grundy, and Thomas Zimmermann. 2020.
An empirical study of release note production and usage in practice. IEEE
Transactions on Software Engineering (2020). https://doi.org/10.1109/TSE.2020.
3038881

[103] Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, Tao Xie, and Xu-
anzhe Liu. 2020. A comprehensive study on challenges in deploying deep
learning based software. In Proceedings of the 28th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 750–762. https://doi.org/10.1145/3368089.3409759

[104] Roberta Coelho, Lucas Almeida, Georgios Gousios, and Arie Van Deursen. 2015.
Unveiling exception handling bug hazards in android based on GitHub and
Google code issues. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. IEEE, 134–145. https://doi.org/10.1109/MSR.2015.20

[105] Wafaa S El-Kassas, Cherif R Salama, Ahmed A Rafea, and Hoda K Mohamed.
2021. Automatic text summarization: A comprehensive survey. Expert Systems
with Applications 165 (2021), 113679. https://doi.org/10.1016/j.eswa.2020.113679

[106] Lobna Ghadhab, Ilyes Jenhani, Mohamed Wiem Mkaouer, and Montassar Ben
Messaoud. 2021. Augmenting commit classification by using fine-grained source
code changes and a pre-trained deep neural language model. Information and
Software Technology 135 (2021), 106566. https://doi.org/10.1016/j.infsof.2021.
106566

[107] Hao He, Runzhi He, Haiqiao Gu, and Minghui Zhou. 2021. A large-scale em-
pirical study on Java library migrations: prevalence, trends, and rationales. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 478–490.

[108] F W Holloway. 1985. Praxis release notes, Versions 7. 4 and 7. 5. (9 1985).
https://www.osti.gov/biblio/5141606

[109] Siw Elisabeth Hove and Bente Anda. 2005. Experiences from conducting semi-
structured interviews in empirical software engineering research. In 11th IEEE
International Software Metrics Symposium (METRICS’05). IEEE, 10–pp.

[110] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, An-
drea Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in deep learning
systems. In Proceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering. 1110–1121. https://doi.org/10.1145/3377811.3380395

[111] Huaxi Jiang, Jie Zhu, Li Yang, Geng Liang, and Chun Zuo. 2021. DeepRelease:
Language-agnostic Release Notes Generation from Pull Requests of Open-source
Software. In 2021 28th Asia-Pacific Software Engineering Conference (APSEC).
IEEE, 101–110. https://doi.org/10.1109/APSEC53868.2021.00018

[112] Jing Jiang, Qiudi Wu, Jin Cao, Xin Xia, and Li Zhang. 2021. Recommending tags
for pull requests in GitHub. Information and Software Technology 129 (2021),
106394. https://doi.org/10.1016/j.infsof.2020.106394

[113] Sebastian Klepper, Stephan Krusche, and Bernd Bruegge. 2016. Semi-automatic
generation of audience-specific release notes. In 2016 IEEE/ACM International
Workshop on Continuous Software Evolution and Delivery (CSED). IEEE, 19–22.

[114] Patrick Lam, Jens Dietrich, and David J Pearce. 2020. Putting the semantics
into semantic versioning. In Proceedings of the 2020 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. 157–179. https://doi.org/10.1145/3426428.3426922

[115] Stanislav Levin and Amiram Yehudai. 2017. Boosting Automatic Commit Clas-
sification Into Maintenance Activities By Utilizing Source Code Changes. Asso-
ciation for Computing Machinery, New York, NY, USA.

[116] Walid Maalej and Hans-Jörg Happel. 2010. Can development work describe
itself?. In 2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010). IEEE, 191–200. https://doi.org/10.1109/MSR.2010.5463344

[117] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian
Marcus, and Gerardo Canfora. 2017. ARENA: An Approach for the Automated
Generation of Release Notes. IEEE Transactions on Software Engineering 43, 2
(2017), 106–127. https://doi.org/10.1109/TSE.2016.2591536

[118] Sristy Sumana Nath and Banani Roy. 2021. Towards automatically generat-
ing release notes using extractive summarization technique. In International
Conference on Software Engineering & Knowledge Engineering, SEKE. 241–248.

[119] Helena Holmström Olsson and Jan Bosch. 2014. From opinions to data-driven
software R&D: A multi-case study on how to close the ’open loop’ problem.
In 2014 40th EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE, 9–16. https://doi.org/10.1109/SEAA.2014.75

[120] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on software engineering 25, 4 (1999), 557–572.

[121] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M Ibrahim, Masao Ohira,
Bram Adams, Ahmed E Hassan, and Ken-ichi Matsumoto. 2013. Studying re-
opened bugs in open source software. Empirical Software Engineering 18, 5
(2013), 1005–1042. https://doi.org/10.1007/s10664-012-9228-6

[122] E. Burton Swanson. 1976. The Dimensions of Maintenance. In Proceedings of the
2nd International Conference on Software Engineering (San Francisco, California,
USA) (ICSE ’76). IEEE Computer Society Press, Washington, DC, USA, 492–497.

[123] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iComment:
Bugs or bad comments? */. In Proceedings of 21st ACM SIGOPS Symposium on
Operating Systems Principles. 145–158. https://doi.org/10.1145/1294261.1294276

[124] Xin Tan and Minghui Zhou. 2019. How to communicate when submitting
patches: An empirical study of the Linux kernel. Proceedings of the ACM on
Human-Computer Interaction 3, CSCW (2019), 1–26.

[125] Martina Toshevska and Sonja Gievska. 2021. A Review of Text Style Transfer
using Deep Learning. IEEE Transactions on Artificial Intelligence (2021), 1–1.

[126] Aidan ZH Yang, Safwat Hassan, Ying Zou, and Ahmed E Hassan. 2021. An
Empirical Study on Release Notes Patterns of Popular Apps in the Google Play
Store. Empirical Software Engineering (2021), 1–41.

[127] Liguo Yu. 2009. Mining change logs and release notes to understand software
maintenance and evolution. CLEI Electron Journal 12, 2 (2009), 1–10.

[128] Song Yu, Li Xu, Yan Zhang, Jinsong Wu, Zhifang Liao, and Yanbing Li. 2018.
NBSL: A Supervised Classification Model of Pull Request in Github. In 2018 IEEE
International Conference on Communications (ICC). 1–6.

[129] Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang,
Shiqing Ma, Lin Tan, and Xiangyu Zhang. 2020. C2S: translating natural lan-
guage comments to formal program specifications. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 25–37.

[130] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019. An
empirical study of common challenges in developing deep learning applications.
In 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 104–115. https://doi.org/10.1109/ISSRE.2019.00020

[131] Yuxia Zhang, Minghui Zhou, Audris Mockus, and Zhi Jin. 2019. Companies’
Participation in OSS development–An empirical study of OpenStack. IEEE
Transactions on Software Engineering 47, 10 (2019), 2242–2259.

https://github.com/girder/cookiecutter-girder-4/issues/45
https://github.com/girder/cookiecutter-girder-4/issues/45
https://github.com/chef/automate/issues/2141
https://github.com/chef/automate/issues/2141
https://github.com/hedgedoc/hedgedoc/pull/1114/files
https://github.com/hedgedoc/hedgedoc/pull/1114/files
https://github.com/opentelekomcloud/terraform-provider-opentelekomcloud/pull/1164
https://github.com/opentelekomcloud/terraform-provider-opentelekomcloud/pull/1164
https://github.com/corgibytes/freshli-lib/pull/279/files
https://github.com/corgibytes/freshli-lib/pull/279/files
https://github.com/corgibytes/freshli-lib/pull/301/files
https://github.com/corgibytes/freshli-lib/pull/301/files
https://github.com/mantidproject/mantidimaging/pull/798/files
https://github.com/mantidproject/mantidimaging/pull/798/files
https://github.com/gohugoio/hugo/pull/83
https://github.com/gohugoio/hugo/pull/83
https://camel.apache.org/releases/release-3.11.0/
https://camel.apache.org/releases/release-3.11.0/
https://github.com/release-drafter/release-drafter
https://github.com/release-it/release-it
https://docs.openstack.org/project-team-guide/release-management.html#how-to-add-new-release-notes
https://docs.openstack.org/project-team-guide/release-management.html#how-to-add-new-release-notes
https://docs.openstack.org/reno/latest/
https://github.com/cockroachdb/cockroach/issues/42163
https://github.com/semantic-release/semantic-release
https://github.com/sympy/sympy/wiki/Writing-Release-Notes
https://github.com/sympy/sympy/wiki/Writing-Release-Notes
https://doi.org/10.1007/s10664-015-9377-5
https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1145/3196321.3196333
https://doi.org/10.1109/TSE.2020.3038881
https://doi.org/10.1109/TSE.2020.3038881
https://doi.org/10.1145/3368089.3409759
https://doi.org/10.1109/MSR.2015.20
https://doi.org/10.1016/j.eswa.2020.113679
https://doi.org/10.1016/j.infsof.2021.106566
https://doi.org/10.1016/j.infsof.2021.106566
https://www.osti.gov/biblio/5141606
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1109/APSEC53868.2021.00018
https://doi.org/10.1016/j.infsof.2020.106394
https://doi.org/10.1145/3426428.3426922
https://doi.org/10.1109/MSR.2010.5463344
https://doi.org/10.1109/TSE.2016.2591536
https://doi.org/10.1109/SEAA.2014.75
https://doi.org/10.1007/s10664-012-9228-6
https://doi.org/10.1145/1294261.1294276
https://doi.org/10.1109/ISSRE.2019.00020

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Understanding Release Note Practices
	2.2 Automating Release Note Production

	3 Methodology
	3.1 Data Collection
	3.2 Analysis Method

	4 Results
	4.1 Content
	4.2 Presentation
	4.3 Accessibility
	4.4 Production

	5 Discussion
	5.1 Implications
	5.2 Threats to Validity

	6 Conclusion
	References

